Chucklib-Livecode Manual

H. James Harkins

June 10, 2024

Contents

1

Introduction
1.1 OVerview o i i i i e e e e e e e e e e
1.2 Acknowledgments

Installation

2.1 Imstallationwithgit.
2.2 Installation withoutgit
2.3 Runningcllinasessiono oe...

Tutorial

3.1 Startingasessiono
3.2 Drumst e e e e e e e e e e e e e e e e e
3.3 Patternstrings o ..o e e e e e
3.4 Generators i e e e e e e e e e e e e e e
3.5 Soundeffects e
3.6 Pitchednotes
3.7 Phrases i i e e e e e e
3.8 Errors e e e e e e e e

Process prototype

4.1 Datastructure. o i
4.2 PR(\abstractLiveCode)
4.3 Parameter map vt i i e e e e e e e e e e e
4.4 Event processingo ittt i e
4.5 Phrase sequence v v i vt

Livecoding statement reference

5.1 Statementtypes.o i e
5.2 Setpattern statement 000
5.3 Start/stopstatement oo
5.4 Makestatement. ittt
5.5 Passthroughstatement
5.6 Chuckstatementttt

5.7 Funccallstatement.,
5.8 Copy or transfer statement
5.9 Show pattern statement
5.10 Helper functions
5.11 (Deprecated) Randomizer statement

6 Generators
6.1 Generatordesign
6.2 Generator USage vttt e e e e e e e e
6.3 Wildcard matching
6.4 Built-in generatorso e
6.5 Pool strings, pool streams
6.6 Writing new generators

7 Graphical interface windows
7.1 Codewindow features
7.2 Controller window features

8 Presets
8.1 ’set’-ting extra parametersinacll process
8.2 Presets and (post)defaults
8.3 Global, persistent presets
8.4 Presetsfornoteplayers,
8.5 makeParms L. L e e e e e e

9 Extending cll
9.1 Statement regular expression
9.2 Handlerobject
10 Code examples

11 Typesetting

1 Introduction

1.1 Overview

Chucklib-livecode (cll for short) is a system of extremely compact commands
extending the SuperCollider programming language. The commands manipu-
late musical processes in real time to facilitate live-coding performances. “Pro-
cesses” in this sense refers to my chucklib quark, introduced in The SuperCollider

Book.1

THarkins, H. James. (2011). “Composition for Live Performance with dewdrop_lib and chuck-
lib.” In Wilson, S., Cottle, D., Collins N. [eds.] The SuperCollider Book. Cambridge, Mass.: MIT Press.

pp. 589-612.

I began implementing cll in August 2014, and it reached a stage where
I could begin performing with it in March 2015. The public extensions are
hosted on github.?

cll consists of two main parts:

1. A chucklib process prototype (PR) that implements the methods that the
musical processes need, in order to receive information from live-coding
statements.

2. Apreprocessor installed into the SuperCollider interpreter. The preproces-
sor translates the cll command syntax into standard SuperCollider code.

This document begins with a tutorial of usage examples. This is enough
to begin making music with it. To add your own sounds, there are two ways.
For pitched note-players, create a Voicer factory and use one of the standard
pitch processes (see Section 3.6). Otherwise, you can create all-new live-coding
processes by cloning PR(\abstractLiveCode) (see Section 4).

1.2 Acknowledgments

Thanks are due to:

+ James McCartney and all the other developers who contributed to Super-
Collider over the years. Without SuperCollider, none of this would exist.

+ Alex McLean, for his work on the Tidal live-coding language for music.3

Tidal demonstration videos online were the first to capture my imagina-
tion about live coding, leading me in this direction.

« Thor Magnusson, whose ixilang system* provided some of the inspiration
for cll syntax.

+ Canton Becker of http://sampleswap.org for granting permission to re-
distribute some audio files from sampleswap’s online collection. These
are used in the ddwLivecodeInstruments quark, referenced in the Tuto-
rial (Section 3).

2 Installation

cll requires SuperCollider 3.7 or later, and recommends v3.9 +. (It is released
using the Quarks v2 system, which is not supported prior to SC 3.7.)
2019/01/26: As before, it is recommended to update all of the ddwx quarks.

2http://github.com/jamshark7@/chucklib-1ivecode

3McLean, Alex. “Making Programming Languages to Dance to: Live Coding with Tidal.” Pro-
ceedings of the 2nd ACM SIGPLAN international workshop on Functional art, music, modeling &
design, September 6, 2014, Gothenburg, Sweden, pp. 63-70.

4http://www.ixi-audio.net/ixilang/, accessed October 4, 2016.

http://sampleswap.org
http://github.com/jamshark70/chucklib-livecode
http://www.ixi-audio.net/ixilang/

2.1 Installation with git

If you have installed the git version-control system on your machine, SuperCol-
lider can automatically download and install Quark extensions. Simply evalu-
ate Quarks. install("ddwChucklib-livecode"). If there are no error messages,
recompile the class library and you should be ready to proceed.

Optionally, also evaluate Quarks.install("ddwLivecodeInstruments”) to
install a pack of ready-to-play instruments. These are used in the Tutorial (3).

2.2 Installation without git

If you haven’t installed git or don’t want to, you can download the required
Quark directories manually. In each of these web pages, look for the green
“Clone or Download” menu. From here, you can download a ZIP.

* ddwChucklib: https://github.com/jamshark70/ddwChucklib
+ ddwPrototype: https://github.com/jamshark70/ddwPrototype

* ddwCommon: https://github.com/jamshark70/ddwCommon

* ddwGUIEnhancements: https://github.com/jamshark70/ddwGUIEnhancements

» ddwMixerChannel: https://github.com/jamshark70/ddwMixerChannel
» ddwPatterns: https://github.com/jamshark70/ddwPatterns
+ ddwTemperament: https://github.com/jamshark7e/ddwTemperament

» ddwVoicer: https://github.com/jamshark70/ddwVoicer

+ crucial-library: https://github.com/crucialfelix/crucial-library@tags/

4.1.5

* [optional] ddwLiveCodelnstruments: https://github.com/jamshark70/
ddwLivecodeInstruments

After downloading these quarks, do the following:

1. In the SC IDE, go to File — Open user support directory.

2. In this location, if there is no folder called downloaded-quarks, create this
empty folder now.

3. Unpack all the ZIP files into the directory. After this, you should have:

* downloaded-quarks/ddwChucklib
* downloaded-quarks/ddwPrototype

* ... and so on. If there is a -master suffix on the directory names,
please remove it.

https://github.com/jamshark70/ddwChucklib
https://github.com/jamshark70/ddwPrototype
https://github.com/jamshark70/ddwCommon
https://github.com/jamshark70/ddwGUIEnhancements
https://github.com/jamshark70/ddwMixerChannel
https://github.com/jamshark70/ddwPatterns
https://github.com/jamshark70/ddwTemperament
https://github.com/jamshark70/ddwVoicer
https://github.com/crucialfelix/crucial-library@tags/4.1.5
https://github.com/crucialfelix/crucial-library@tags/4.1.5
https://github.com/jamshark70/ddwLivecodeInstruments
https://github.com/jamshark70/ddwLivecodeInstruments

4. In SC, run the statement Quarks.install("ddwChucklib-livecode"”). If it
doesn’t find the quarks, try recompiling the class library and then run the
statement again.

5. If all is successful, recompile the class library and proceed.

2.3 Running cll in a session

cll adds convenience functions to load the environment:

* \loadCl.eval: Load the cll preprocessor and a few helper functions.

* \loadClExtras.eval: Load extra user-interface components:mobile con-
trol with TouchOSC, and interactive code editor, and ddwLivecodelnstru-
ments if you have installed the quark.

* \loadAllCl.eval: Load both of these at once.

+ \makeController.eval: Open a graphical window with reusable mixing
and parameter controls. (See Section 7.) Arguments are: Control proto-
type (currently, either \mix16Touch or \nanoTouch), and a MIDI device
search string (relevant only for \nanoTouch).

+ \makeCodeWindow.eval: Open a code editor window with cll-specific fea-
tures.

* \cl1lGui.eval: Open both the controller and code windows. Accepts the
same arguments as \makeController.

These are not executed by default at SC startup, because you may not want
the preprocessor in every SC session. Once you load the environment, the pre-
processor is active until the next time you recompile the class library.

3 Tutorial

First, if you didn’t install the optional ddwLivecodeInstruments quark, please
do so now. Without these, you will have to learn the mechanics of creating
a live-coding process before playing any music. See section 2 for installation
details.

ddwLivecodeInstruments provides a set of standard electronic drums (Sec-
tion 3.2), and several synthesizers for pitched notes (Section 3.6).

I recommend working step-by-step, starting with the drums (because there
are fewer variables and moving parts) before moving on to pitches. You will
probably get more out of it by typing the code examples yourself, rather than
copying/pasting.® I've tried to make it easy to get started, but bear in mind

5Copying from this PDF is likely to change the code formatting and possibly break the code. If
you must copy/paste, use the file c1-manual-examples.scd.

\loadAllCl.eval;
// optional

\cllGui.eval;
Listing 1: Launching chucklib-livecode.

that this improvisational instrument has been in development since mid-2014.
You shouldn’t expect to understand it all in 15 minutes (just as you wouldn’t
expect to read a couple of tutorials about SuperCollider itself and “understand”
it in depth). Take your time. Experiment. Start with the examples and change
them.

If you encounter problems, you could post on the SuperCollider users mail-
ing list® or the ddwChucklib-livecode issue tracker.” (Also note that this is the
first version of the tutorial. Many things may be badly explained as yet. Don’t
hesitate to raise an issue if something is confusing.)

3.1 Starting a session

When you launch SuperCollider, cll is not active. (For normal usage, you
want to use the standard parser as is.) To use cll, you need to load the environ-
ment. Optionally, you can open a graphical environment with some additional
features (see Section 7).

3.2 Drums

We’ll start with drums (Listing 2), because the notation is a little simpler.
Kicks and snares are created by the convenience function /drum. (name); use
/hh. (name) for hi-hats. Available names are:

e /drum. (name)

— \deepkick: BP(\dk)
- \tightkick: BP(\tk)
— \midkick: BP(\mk)
— \tightsnr: BP(\tsn)
— \fatsnr: BP(\fsn)
— \pitchsnr: BP(\psn)
— \snr80: BP(\s8)

— \clap: BP(\clp)

6https ://www.birmingham.ac.uk/facilities/ea-studios/research/supercollider/
mailinglist.aspx
“https://github.com/jamshark70/ddwChucklib-1livecode/issues

https://www.birmingham.ac.uk/facilities/ea-studios/research/supercollider/mailinglist.aspx
https://www.birmingham.ac.uk/facilities/ea-studios/research/supercollider/mailinglist.aspx
https://github.com/jamshark70/ddwChucklib-livecode/issues

\loadAllCl.eval;
TempoClock.tempo = 124/60;

/hh. (\hardhh);
/hhh = " - - - -7,
/hhh+

/drum.(\tightsnr);
/tsn =" - =",
/tsn+

/drum. (\deepkick);
/dk = "o| o _o |";
/dk+

// mixing board
/makeEmptyMixer8.();
/hhh => MCG(0);

/tsn => MCG(1);

/dk => MCG(2);

/hhh/tsn/dk-
Listing 2: A quick techno-ish drumset.

* /hh. (name)

\thickhh: BP(\hh)
\thinhh: BP(\thh)
\hardhh: BP(\hhh)
\synthhh: BP(\shh)

Note the pattern to use an instrument:

« Create it, using the /drum. (\name) for drums and /hh. (\name) for hi-hats.
The result is a BP object—a Chucklib “bound process.” You can access the
process object globally by putting its name in parentheses: BP(\dk), for
instance. Many cll commands use only the name with a leading slash: /dk.

« Give it some music to play (by assigning it a pattern string). More about
pattern strings below.

« Start it (+). If + is start, - is stop. You can start and stop several pro-
cesses at once by listing them on the same line, each name beginning
with its slash: Listing 2 stops all three processes using one command,
/hhh/tsn/dk-. By default, the processes will start or stop on the next bar
line (BP(\name) .beatsPerBar). You can override this by putting a number
of beats after the + or -: /dk+8 for the next even bar line.

Mixing: loadAllCl creates a few MixerChannel objects: ~hwOut (hardware
output), ~master (main output), ~rvbmc (long-tail reverb), ~longrvbmc (long-
tail reverb), and ~shortrvbmc (short-tail reverb).® If you want to adjust the mix,
first run /makeEmptyMixer8. (). After that, you can “chuck” mixers, processes
or Voicers into mixing board slots: ~master => MCG(7), e.g., for the rightmost
slot. Later, when you create playing objects, you can chuck them in as well.
For instance, where Listing 2 creates a tightsnr player, you can do /tsn =>
MCG(©@) and its mixer will appear.

3.3 Pattern strings

Cll uses single characters for notes, and spaces for timing placeholders.

+ Kick drums: o = normal weight, _ = ghost note
+ Snare drums: - = normal weight, . = ghost note’
» Hi-hats: - = open hat, . = closed hat

By default, the unit of time is one bar (taken from the default TempoClock,
whose default beatsPerBar is 4). The characters and placeholders divide this
time span equally: /hhh has 8 characters, splitting the bar into 8th-notes, while
/tsn has 4. You might think the spaces in /tsn are rests, but they aren’t: they
only specify the passage of time, here forcing the two snare drum strokes onto
beats 2 and 4.

The kick drum pattern is slightly more complicated. The vertical pipes (|)
are dividers. Dividers appear between, but not surrounding, the time spans;
three dividers demarcate four divisions: "1|2|3|4". Each subdivision is divided
equally by the characters contained within. In "o| o| _o |”, the first beat is a
quarter-note, the second divides into 8th-notes and the third into 16ths. With
a little practice, you can read the rhythm directly from the ASCII notation.

« Exercise: Edit the given pattern strings to create more interesting rhythms.
After every change, reevaluate the line. This is the basic process of im-
provising with cll.

3.4 Generators

Cll can also generate new materials algorithmically. (The tutorial can pro-
vide only a brief demonstration, not complete documentation. See Section 3.4
for more detail.)

8The distinction between ~hwOut and ~master is for multitrack recording of live sets, where you
may wish to record the main, dry mix (~master) separately from reverbs. In general, processes
and instruments should direct their signal to ~master; reverbs and other separate channels (e.g.,
microphones) may connect directly to ~hwOut.

9The characters for kicks and snares are different, so that a kick and a snare could be combined
into one process: /drum. (#[tightkick, tightsnr]);.

/hhh/tsn/dk+

/7 A

/tsn = "[- -J::\ins(".", 2, 0.25)";

// B

/tsn = "[- -J::\ins(".", 2, 0.5)";

// C

/tsn = "[- -J::\ins(".", 2, ©0.5)::\shift("."”, 2, 0.25)";

// D (empty source, so, omitted)
/hhh = "Nins("-", 1, 0.5)::\ins(".", 7, 0.5)";

// E (one closed HH to fill start of bar)
/hhh = "[.J::\ins("-", 1, ©.5)::\ins(".", 6, 0.5)";

// F

/hhh = "[.J::\ins(”-", 1, ©.5)::\ins("."”, 6, ©.5)::\ins(".", 2,
0.25)";

// G

/hhh = "\fork (" |\ins("-", 1, @.5)||x")::\ins(".”, 7, ©.5)::\ins
(".", 2, 0.25)";

/hhh/tsn/dk-

Listing 3: Generators for drums.

Generators take a given pattern string as their initial input, enclosed in
brackets, and modify it by inserting, deleting or replacing entries. (The initial
pattern string can be empty, in which case it may be omitted.) A few basic
functions are:

* \ins("item pool”, number, quant): Insert number new items, randomly
chosen from the item pool, at rhythmic intervals given by quant (e.g. 0.25
= quarter beats = 16th-notes).

* \shift("item pool”, number, quant):Locate number of the items in item
pool, and shift them earlier or later by the rhythmic value given by quant.

+ T will expand this list later.

For example, the snare drum would benefit from some ghost notes, and it’s
more fun if they change from bar to bar. We could insert them into any open
16th-note (Listing 3, example A). But if you play this long enough, eventually
you will hear some bars with too many 8th-notes. This sounds stilted. It would
be better to force the ghost notes onto off-beat 16ths. An easy way to do that is
to place the ghost notes onto 8th-notes (B), and then shift them (C). Note the
:: syntax. This creates a generator chain, where the result of the a generator (or
source) feeds into the the next. (Because the chain provides the source string
for \shift(), you don’t need to write a source—but you still need the comma.)

For hi-hats, a musically sensible way to operate is to place one or more
open hats, and then fill the remaining spaces with closed hats (D). Here too,
eventually you will run into a musical problem: an open hat on the downbeat
sounds awkward. Instead, you can place a closed hat explicitly in the first slot
(E), “protecting” that space from insertion. (The example adjusts the number
of closed hats to insert at the end, from 7 to 6. While formally correct, it isn’t
necessary in the performance. \ins() will add as many as it can, and not com-
plain if it doesn’t reach the requested number.) Finally, for some more spice,
you can add a few 16th-notes.

Another way to “protect” part of the bar from a generator is to \fork() it.
\fork() takes a source string, and another string placing generators in specific
parts of the bar. In example G, the fork string places an \ins() on beat 2, and
follows it with an x on beat 4. The \ins(), then, cannot operate before beat
2, and the x ends the \ins() generator’s range of influence. So the open hat
can be inserted in positions 2, 2.5, 3 and 3.5 (not including 4, which belongs
to x). x is not a generator, so it does nothing in the context of \fork() except
delimit time. After the fork(), the remaining generators operate on the whole
bar, as before. This is an important technique to control the time over which
generators may take effect.

It isn’t very useful for drums, but a typical generator usage is to insert wild-
cards (usually * or @) to define the rhythm, and then replace them using a num-
ber of generators inspired by SuperCollider patterns: \seq(), \rand(), \shuf(),
\wrand() and such. These are more useful when you have a larger number of
possible items to choose from, such as when playing a pitched instrument.

10

\loadAllCl.eval; // If you haven't already done this
TempoClock.tempo = 124/60;

// The beat
BP(#[tk, clp, hhh, tsnl).free; // Clean up first
/drum. (\tightkick); /drum.(\clap); /hh.(\hardhh);

/tk = "ol ol";
Jclp = " - v
/hhh = " L. "
/tk/clp/hhh+

/drum.(\tightsnr);
/tsn = "||].";

/tsn+

/clp
/tsn

nl_ll ",
. ’

u||| n,
. -y

// make the effects

/make (bufBP:mch(set:\machine));
/mch = "| -||";

/mch+

/mch = "] - , ,[";

/tk/clp/hhh/tsn/mch-;
Listing 4: Adding sound effects to a simple beat.

HINT: If you have installed the ddwSnippets Quark, generator objects will
automatically add their own templates into the snippets collection. The snip-
pets can help you with the order of arguments: press the snippet hotkey (which
you configure using DDWSnippets.learn), type a few letters of the generator
name, and the template will be inserted into your document.

3.5 Sound effects

The bufBP template provides some unusual percussion sounds, for extra
color.

The sounds are organized into “sets,” so that each resulting process has
a simpler interface. To choose a sound set, use the parameter notation of the
/make command: /make (bufBP:name(set:\setName)), substituting your desired
process name for name and the name of the set for setName.

* machine: Servomotor clips (3)

11

» tink: Metallic (2)
» whistle: A sound reminiscent of a train whistle (3)
» wiggle: A, well, “wiggle” (for lack of a better word) (3)

In pattern strings, you can use the following characters (chosen as a visual
approximation of pitch level and duration):

Pitch | Long | Short

High " !
Middle -

Low _ R

Note, however, that the tink set has only two sounds, omitting the high
pitch level. With this set, * and ! are rests (silent).

Figure 4 is a simple example. You should play with the other sets and make
your own rhythms.

3.6 Pitched notes

Pitched-note processes require a Voicer instrument and a BP process to play
the notes.
Available Voicers:

* anapadVC: Analog-style pad.
» distbsVC: Distorted-sine bass.

« fmMelVC: Maps notes onto FM modulator ratio, playing harmonics. A bit
strange.

+ fmbassVC: FM bass.

» fmbrassVC: Brassy FM tone.

+ fmclavVC: FM clav tone.

 fmpadvC: FM pad.

* klankVC: Detuned bell-like timbre. Not sustaining.
* pbsVC: Pulse-wave bass.

* pulselLeadVC: Pulse-wave synth lead.

+ staccVC: Analog-style staccato notes.

Available BP processes:

+ melBP: Monophonic melody player. Use for basses and leads.
+ chordBP: Block-chord player.

* arpegBP: Chord arpeggiator.

12

3.6.1 Pitch: Overview
Using pitch in cll requires a little preparation.

1. Set the tempo. (You should do this in every performance, as already
demonstrated in Listing 2.)

2. Set the mode by /changeKey. (\name). ddwLivecodelnstruments defines a
Mode object for all seven classical Western modes, for all 12 chromatic
steps. Modes are identified by the root pitch (c, cs = c-sharp, db = d-flat,
and so on) plus a modal identifier (Table 1). B-flat lydian is Mode (\bblyd);
F-sharp minor is Mode (\fsmin).

Table 1: Modal identifiers.

Mode ID
Major (Ionian) maj
Dorian dor
Phrygian phr
Lydian lyd
Mixolydian mixo
Minor (Aeolian) | min
Locrian loc

3. Create instruments and players. Internally, this is a three-step process:
1. Create the Voicer instrument. 2. Create the playing process. 3. Con-
nect the instrument to the player. CIl provides a shortcut: If you write
a single /make command that creates the instrument first (1), followed
by the player process (2), then /make will automatically assign the
instrument to the player (3, implicitly). Listing 5 demonstrates with
/make (pbsVC:pbs/melBP:bs(octave:3));:

* /make
— pbsVC:pbs: Make the pbsVC instrument under the name pbs.
— melBP:bs: Make the melody player melBP under the name bs.
% (octave:3): A parameter to apply to the new bs process.

— (Here, cll does VC(\pbs) => BP(\bs) for you, but you don’t have
to write anything for this!)

The general form is /make (factoryID: instanceID(parameters...)) with
additional factory/instance pairs separated by slashes.
3.6.2 Pattern string pitch specification

In pattern strings, the modal root is 1.1° Each note begins with a single digit,
going up from there: 8 is an octave higher, 9 is the 9th, and 0 is the 10th (octave

101n SuperCollider pattern terms, 1 translates into degree 0.

13

/changeKey . (\dmixo);
/make (pbsVC:pbs/melBP:bs(octave:3));

/bs = "1_| 1. 7~4|x";

/bs+
/bs-

Listing 5: Bassline template.

above the third).!! This follows the arrangement of digits on the keyboard: the
further right you go, the higher the pitch. You can also attach various modifiers:

1

« ' or ,: Up or down one octave. '' is up two octaves, and so on.

» + or -: Up or down a semitone (like sharp or flat). NOTE: Flats are not
completely working as of this writing.

« . or _ or ~: Staccato, legato or slurred articulation. A slur will slide into
the next note, if the instrument supports it.

+ > Accent articulation. Always prevents a slur, and depending on the in-
strument, it might hit the note a little harder. > may be combined with
other articulations.

The digit plus its modifiers becomes a single event—so, in Listing 5, beat 3
contains five characters but four events (7~ is just one event). Timing is based
on events, not characters.

Any event that does not begin with a digit—I often use x—is a rest, which
cuts off the preceding note (in contrast to a space, which affects timing only).

3.6.3 Basses and leads

Basses and leads should use the melBP melody player: one written note pro-
duces one sounding note (Listing 5).

For basses in particular, get in the habit of assigning the octave. This is the
normal octave event parameter from the SuperCollider pattern system. Assum-
ing C as the modal root, octave 5 puts scale degree 0 at middle C. Octave 3 in
the example pulls the bass two octaves lower. If you forget, you can correct it
later by /bs(setDefault(\octave, 4)) or whichever octave number you need.

Leads follow the same principles, except in a higher octave.

Exercise: Modify the given template to add more notes. Try the different
articulation styles.

3.6.4 Chords

11Currently a diatonic scale (7 degrees) is assumed.

14

/make (anapadVC:pad/chordBP:ch(chords:\one));
/ch = "87~05";
/ch+

VC(\pad).gui
MBM (@) [\two]l => BP(\ch);
MBM (@) [\smallch] => BP(\ch);

/ch-
Listing 6: Chord-playing template.

chordBP (Listing 6) uses the same pitch notation, but to control the top note
of a harmony. The harmonies come from chord templates stored in a MIDI
buffer object (MIDIRecBuf). Currently, four are provided (later documentation:
how to create your own chord templates).

+ one: Single notes (so that the chord player can start as a melody, and
grow into harmony).

» two: Two-note chords, in all intervals from a second to an octave.
» smallch: Three-note chords, not all standard triads.

* bigch: Six-note chords.

The chord templates will be adapted to the top note and the current chord
root (later documentation: how to control the root).
Articulations (including slur!) are valid.

3.6.5 Arpeggiator

NOTE: The arpeggiator is a bit complex to use, and it isn’t a high priority for
the first round of documentation. I'm providing an example (Listing 7) to give
you some hints, and I want to expand the documentation later. For now, try it,
and if you run into trouble, file an issue at https://github.com/jamshark70/
ddwChucklib-1livecode/issues.

The arpeggiator is a bit strange. It uses the same harmony-processing logic
as chordBP, but the pitches in the pattern string are indices of chord notes, not
the actual sounding pitches. 1 is the top note, 2 is the next lower, and so on
proceeding down the chord to 7. 8, as a normal pitch, is an octave higher than
1; in the arpeggiator, it takes the top note of the chord and raises it by an octave
(and all seven indices do octave displacement in the same way).

To make best use of this process, you need to assign alternate parameters:
top for the top note of the harmony (which behaves like chordBP) and skip for

15

https://github.com/jamshark70/ddwChucklib-livecode/issues
https://github.com/jamshark70/ddwChucklib-livecode/issues

/make (fmclavVC:fmc/arpegBP:arp(chords:\bigch));

// These are indices, from the top down, into the current
/arp.: "1234";

/arp+

// Add some lower notes as a second layer.
// Accent articulates the start of the bar.
/arp = "[1>234]::\ins("456", 6, 0.25)";

// Extend the second layer higher.
/arp = "[1>2347::\ins("23456", 7, 0.25)";

// Use wildcards to substitute a sequential pattern.
/arp = "[1>234]::\ins("*x", 7, 0.25)::\seq("65432")";

// Change the harmony's top note every bar.
/arp..top = "[*]::\seq("5'6'3"'2"")";

// Skip: Play dyads instead of single notes.
/arp..skip = "2";

// Skip can also accent specific notes.
/arp..skip = "20 |20 |20 |20 ";

// same, but algorithmic
/arp..skip = "[2222]::\choke(0.25, "@")";

// Add a second process to change the chord root.
// After this, you should hear tonic, dominant

// and subdominant functions.

// No instrument -- this is for data only.

/make (melBP:root(bassID:\bass));

/root = "[*]::\seq("154")";

/root+

/arp/root -
Listing 7: Example of arpeggiator usage.

16

chord

extra thickness. The default skip is 0, meaning to play single notes. Try the
other values (1-5). Note that the harmony will not change unless top changes,
so it’s a good idea to supply a slower-moving pattern for this parameter.

The double-dots are a syntax shortcut. Cll processes can store any number of
phrases and switch between them. So far, we are using only the default phrase,
main. The full form of the skip and top statements in the example is, in fact,
/arp.main.top = "..."; omitting main leaves /arp. .top. (You can’t leave out
one of the dots. If you do, top will be interpreted as a phrase name, and it won’t
behave the way you want.)

3.6.6 Pitched instrument parameters

Voicer instruments have two types of parameters: “global controls” and event
parameters.

Global controls act like knobs on conventional synthesizers, by affecting
all playing notes. These can be displayed automatically in a GUI window by
running VC(\name) .gui. Alternately, you could load Chucklib’s performance
GUI (\cl1Gui.eval); for details, see Section 7.

Event parameters should normally take care of themselves. If you need
to override, use the form /processName(setDefault(\parameter, value)). It
should be rare to need to do this, but it’s useful, for instance, if you forget to
set the octave of a bass process and it starts playing in the middle register. Just
do /process(setDefault(\octave, 3)) (or other value) and the next note will
be lower.

(This is a tutorial, not reference documentation for all the instruments. Doc-
umentation to be expanded later.)

3.7 Phrases

The examples so far repeat a single bar’s worth of content. Cll processes
allow you to define multiple bars, and choose between them.

Each bar, or phrase, has a name. Attach it after the process name, with a
dot: /process.phrase = "content”. Then, use a phrase selection pattern (Sec-
tion 5.2.5) to choose the bars in succession. Listing 8 demonstrates with drum
processes, playing the basic pattern for three bars and a fill pattern for the
fourth.

Alternately, you can create multi-bar structures using a few convenience
functions (Listing 9):

« /setupbars. (\proc, n, \prefix): Creates n empty bars, named \prefixo,
\prefix1 and so on.

« /setm. (\proc, n, \prefix): Tell the process to use a multi-bar phrase
set for playback.

» /bars.(\proc, n, \prefix): Do both at the same time.

17

TempoClock.tempo = 124/60;
/drum. (\tightkick); /drum.(\tightsnr); /hh.(\thinhh);
/tk = "o0000";

Jtsn = 7o v
/thh = "[.7::\ins("-", 1, ©.5)::\ins(".”, 6, 0.5)";

/tk/tsn/thh+

/tk.fill = "ol _lo __";

// mid-bar source string:

// in this position, it fills 3 eighth-notes
/tsn.fill = "|-| [- J::\ins(".", 4, 0.25)|";

/tk = (main*3.fill); /tsn = (mainx3.fill);

/tk/tsn/thh-
Listing 8: Phrase selection for drum fills.

// If the bass doesn't exist, first do this:
/make (pbsVC:pbs/melBP:bs(octave:3));

/bars.(\bs, 2, \a);

/bs.a0 = "1>|4~5~7 | 4~|3l~n;
/bs.al "o5>~|6| 4~| 3";

/setupbars.(\bs, 2, \b);

/bs.bo = "9>.9.9 | 4’
/bs . b1 " 33.] 4.5~

~] 3'|8~7~8~ ";
| 431.16.6. 6.";

// short form of /setm.(\bs, 2, \b)
/bs = (bxx2);

/bs+
/bs-

Listing 9: Multi-bar bassline.

18

IMPORTANT: Do not omit the . between the function name and the ar-
guments. Cll distinguishes between a function-call shortcut /name. (args) and
a method-passthrough shortcut /proc(method(args)), with the dot to tell the
difference.

Note that /bars. () will tell the process to start playing a silent phrase struc-
ture. So, you should use it only when setting up a new process. If you're already
playing material, it’s better to /setupbars. () first, fill the bars with material,
and then switch to the material using /setm. ().

An alternate syntax for /setm. () is /proc = (prefix**n). This command
also sets the process’s quant to the same number of bars, so that the process
will start and stop on the boundaries of the entire phrase set. Be careful when
switching from a single-bar structure to multiple bars: you should hit /setm. ()
or the alternate syntax within the bar before the boundary.

For convenience, /setupbars. () will try to insert a code template with the
empty bars into the current SC-IDE document.

3.8 Errors

Cll syntax errors are reported in the form “ERROR: ...” (with a brief explana-
tion).

A common error is “ERROR: clPatternSet: BP(‘abc’) does not exist,” meaning
that a cll command referred to a process that hasn’t been created. Look for a
misspelled name. (Cll is a translator, converting its own syntax into SC language
code. Many of the translations depend on information within the object. If
the objects don’t exist, translation is impossible. So, it fails in the translation
stage—but the translation happens in SC language code, so it must be reported
as an execution error.)

If an error occurs within a process while it’s playing, usually the bottom
of the stack trace will refer to awake or prStart. Please report such errors to
https://github.com/jamshark70/ddwChucklib-1livecode/issues; as much as
possible, cll should try to continue playing without stopping processes. If this
does happen to you, it should be possible to recover by simply playing the pro-
cess again. (Internally, the process will try to reset itself. If this fails for some
reason, you can manually stop and reset before trying again to play it.)

4 Process prototype

Cll is not limited to the preset instruments. In theory, cll can play any SynthDef

(or complex of synths!) by modifying a process prototype, PR(\clAbstractLiveCode).
This prototype is the interface between cll patterns and your sounding mate-
rial. We’ve seen how pattern strings use single-character identifiers to denote
rhythm. PR(\clAbstractLiveCode) translates these identifiers into real param-
eter values, and provides hooks to supply other information necessary for play-
ing.

Before we get to the details, you should understand the data structure.

19

https://github.com/jamshark70/ddwChucklib-livecode/issues

4.1 Data structure

cll organizes musical behavior, and musical content, hierarchically:

 Chucklib processes (BP) contain any number of phrases. Every process has
its own variable scope (i.e., independent namespace). Activity in one pro-
cess does not interfere with other processes.

» Each phrase contains multiple parameters. (The phrase itself is imple-
mented as a PbindProxy, so that its contents can be changed at any time.)

+ Each parameter is defined by a pattern string, parsed and rendered into
SuperCollider pattern syntax by the Set pattern statement (Section 5.2).

 Parameter values are defined by the parameter map (parmMap).
cll processes create two phrases by default:

main The default phrase, which plays if the user hasn’t specified a different
phrase sequence. main is also the default phrase that Set pattern acts on—
thus, a user can work with single-bar loops using only main, and never
specify a phrase ID.

rest An empty phrase, which only occupies time.

4.2 PR(\abstractLiveCode)

To create a cll process, “chuck” PR(\abstractLiveCode) into a BP (“Bound
Process”), with a parameter dictionary providing the details. Parameters to
include in the dictionary:

userprep A function, called when the process is created. Use this function to
create any resources that the process will require.

userfree A function, called when the process is destroyed. Clean up any re-
sources allocated in userprep.

defaultParm The name of the default parameter affected by Set pattern state-
ments (Section 5.2). The default parameter also controls rhythm.

parmMap A nested dictionary of parameters, their allowed values, and the char-
acters that will identify these values in pattern strings.

defaults An Event or event pattern providing default values for the events
that the process will play.

postDefaults (optional) An event pattern that can do further calculations on
the parameter values.

20

(

(
defaultName: \beep,
make: { |name|
PR(\abstractLiveCode).chuck(BP(name), nil, (
userprep: {
~buf = Buffer.read(
s, Platform.resourceDir +/+ "sounds/allwlk@l.wav",
4982, 10320
)
~defaults[\bufnum] = ~buf;
SynthDef (\buf1, { |out, bufnum, pan, amp, time = 1|
var sig = PlayBuf.ar (1, bufnum),
eg = EnvGen.kr(
Env.linen(0.02,
min(time, BufDur.ir(bufnum) - 0.04), 0.02),
doneAction: 2
)
OQut.ar(out, Pan2.ar(sig, pan, amp * eg));
}) .add;
3,
userfree: {
~buf. free;
3,
defaultParm: \amp,
parmMap: (
amp: ($.: 0.1, $-: 0.4, $*: 0.8),
pan: (
$<: -0.9, $>: 0.9,
$(: -0.4, $): 0.4,
$-: 0
)
),
defaults: (instrument: \buf1),
postDefaults: Pbind(
\time, (Pkey(\dur) * 0.6 / Pfunc { ~clock.tempo }).
clip(0.04, 0.2)
)
D
}, type: \bp) => Fact(\beepBP);
)

Listing 10: Defining a simple cll process as a factory.

21

\loadCl.eval; // or \loadAllCl.eval;
TempoClock. tempo = 2;

/make (beepBP); // defaultName is 'beep' so you get BP(\beep)
/beep = "~ .. .| .- | . "; // "Set pattern”

/beep+; // start it

/beep..pan = "<><><><>"; // change something

/make (beepBP:beep2); // ':' overrides defaultName

/beep2 =" .| .~ . | "

/beep2+

/beep..pan = "<";
/beep2..pan = ">";

/beep/beep2-;

/beep(free); /beep2(free);

Listing 11: Using the cll process factory in a performance.

Note: Chucklib documentation says to place the initialization function into
prep, and cleanup into freeCleanup. PR(\abstractLiveCode) uses these
functions for its own initialization and cleanup, and calls userprep and
userfree from there. Do not override prep and freeCleanup, or your pro-
cess will not work properly.

This dictionary is not limited to these items. You may add any other data
and functions that you need, to define complex behavior in terms of simpler
functions and patterns.

In Listing 10, userprep loads a buffer and userfree releases it. By default,
Set pattern will operate on amp, and parmMap defines three values for it (soft,
medium and loud). parmMap also provides some panning options. The defaults
dictionary specifies the SynthDef to use (it may provide other synth defaults as
well, not needed in this example), and postDefaults calculates the sounding
duration of each note based on rhythm.

Note the line ~defaults[\bufnum] = ~buf: You may add values into defaults
as part of userprep. That’s necessary in this case because the buffer number is
not known in advance. The only way to supply the buffer number as a default
is to read the buffer first, and put it into the defaults dictionary only after that.

After loading the definition, Listing 11 demonstrates how rapidly a per-
former can instantiate and use multiple copies of the prototype.

22

Note: Clearly, the code in Listing 10 is too long to be practical to type in
the middle of a performance. For practical purposes, you should place all
of the process definitions into a separate file, which you would load once
at the beginning of a performance. See also the Make statement (Section
5.4), which makes it easy to instantiate the processes as needed during the
performance, reducing the overhead of initial loading. (In fact, Chucklib
was designed from the beginning to “package” complex musical behaviors
into objects that are simpler to use, once defined. cll is an even more com-
pact layer of control on top of this, following the same design principle:
definition and performance usage are different, and call for different types of
code.)

Listing 10 illustrates how to wrap the PR(\abstractLiveCode).chuck(...)
statement into a Chucklib factory object. I strongly recommend following
this model; it “publishes” your process for use with /make () and avoids the
need to manage large, complex code blocks in performance.

4.3 Parameter map

The parameter map parmMap is easiest to write as a set of nested Events:

parmMap: (

parmName: (
char: value,
char: value,
char: value...

) ’

parmName: (...)

Listing 12: Template for the parameter map.

parmName keys should be Symbols. The keys of the inner dictionaries should
be characters (Char), because the elements of the pattern strings that represent

“notes” are characters.

The inner dictionaries may contain two other items, optionally:

isPitch If true, enables pitch notation for this parameter (Section 5.2.4).

alias An alternate name for this parameter, to use in the pattern. For example,
if the parameter should choose from a number of SynthDefs, it would be
inconvenient to type instrument in the performance every time you need
to control it, whereas def would be faster. You can do this as follows:

parmMap: (
def: (
alias: \instrument,
$s: \sawtooth, $p: \pulse, $f: \fm

23

)

// Then you can set the "instrument”

nan

/proc.phrase.def = "s";

pattern:

Written this way, def in the Set pattern statement will be populate
instrument in the resulting events.

4.3.1 Array arguments in the parameter map

Array arguments are valid, and will be placed into resulting events as given
in the parameter map. In Listing 13, freqgs will receive the array [200, 300,
400] and process that array according to the event prototype’s rules.

parmMap: (
fregs: (
$2: [200, 300, 4001,
),

parmName: (...)

)

Listing 13: How to write arrays in the parameter map.

Envelopes may be passed to arrayed Synth controls in the same way:
Env.perc(0.01, 0.5).asArray.

Note: The above is valid for the event prototype used by default in
PR(\abstractlLiveCode). This is not SuperCollider’s default event; it’s a cus-
tom event prototype defined in chucklib that plays single nodes and inte-
grates more easily with MixerChannel. Because each such event plays only
one node, array arguments are passed as is. The normal default event ex-
pands one-dimensional arrays into multiple nodes. The way to avoid this
is to wrap the array in another array level.

parmMap ar- | singleSynthPlayer Default event mean-
ray format meaning ing
[1, 2, 3] Pass the array to one | Distribute the three val-
node ues to three nodes
LC1, 2, 311 Invalid Pass the array to one
node

One other use of the parameter map array is used to set disparate Event
keys using one cll parameter. Pbind allows multiple keys to be set at once by
providing an array for a key. cll supports this by using an array for the alias!

parmMap: (
filt: (
alias: [\ffreq, \rql,

24

$x: [2000, 0.05]

)

Listing 14: Arrays for multiple-parameter setting using one cll parameter.

4.4 Event processing

Every event produced by a cll process goes through three stages:

1. Insert all the items from defaults.
2. Insert the values from the current phrase (defined by pattern strings).

3. Insert any values from postDefaults. This may be a Pbind, and it has
access to all the values from 1 and 2 by Pkey.

Thus, you can use postDefaults to derive values from items defined in the
parameter map, or to check for invalid values.

4.5 Phrase sequence

cll “Set pattern” statements put musical information into any number of
phrases. When you play the process, it chooses the phrases one by one using a
pattern stored as phraseSeq. “Set pattern” has a compact way to express phrase
sequences, allowing sequences, random selection (with or without weights) and
wildcard matching. See Phrase selection for details (Section 5.2.5).

This design supports musical contrast. The performer can create divergent
materials under different phrase identifiers. Then, during the performance, she
can change the phrase-selection pattern to switch materials on the fly. Sudden
textural changes require changing many phrase-selection pattern at once. Foer

25

5 Livecoding statement reference

5.1 Statement types

Type Function Syntax outline

Set pattern Add new musical informa- | /proc.phrase.parm =
tion into a process "data”

Start/stop Start or stop one or more | /proc/proc/proc+ or -
procesess

Randomizer | Create several randomized | /proc.phrase.parm *n +ki
patterns at once "base”

Make Instantiate a process or | /make(factory/factory)
voicer

Passthrough | Pass a method call to a BP /proc(method and

ﬁb'] arguments)
| Chuck Pass a chuck => operation | /proc => target

to a BP

Func call Call a function in chucklib’s | /funcname. (arguments)
Func collection

Copy Copy a phrase or phrase set | /proc.phrasexn -> new
into a different name

Transfer Like “Copy,” but also uses | /proc.phrase*n ->> new
the new phrase for play

Show pattern | Copies a phrase pattern’s | /proc.phrase.parm
string into the document,
for editing

cll supports the statements shown in Table ??, listed in order of importance.
cll statements begin with a slash: /. Statements may be separated by semi-
colons and submitted as a batch.

// run one at a time

/kick.fotf = "----
/snare.bt24 = " -

// or as a batch

/kick.fotf = "----

n o,
’

; /snare.bt24 =" - -";

Listing 15: Cll statements, one by one or as a batch.

5.2 Set pattern statement

Set pattern is the primary interface for composing or improvising musical ma-
terials. As such, it’s the most complicated of all the commands.
This statement type subdivides into two functions: phrase definition and

phrase selection.

26

5.2.1 Phrase definition

Most “Set pattern” statements follow this format:

/proc.phrase.parm = quant”string”;

Listing 16: Syntax template for the Set pattern statement.
Syntax elements:

proc The BP’s name.
phrase (optional) The phrase name. If not given, main is assumed.

parm (optional) The parameter name. The BP must define a default parameter
name, to use if this is omitted.

quant (optional) Determines the phrase’s length, in beats.

* A number, or numeric math expression, specifies the number of
beats.

« + followed by a number indicates “additive rhythm.” The number
is taken as a base note value. All items in the string are assumed to
occupy this note value, making it easier to create fractional-length
phrases. (If only + is given, the BP may specify division; otherwise
0.25 is the default.)

« If quant is omitted entirely, the BP’s beatsPerBar is used. Usually
this is the beatsPerBar of the BP’s assigned clock.

string Specifies parameter values and rhythms.

Note: Both the phrase and parameter names are optional. That allows the
following syntactic combinations:

Syntax Behavior

/proc = "string" Set phrase “main,” default parameter
/proc.x = "string" Set phrase “x,” default parameter
/proc.x.y = "string” | Set phrase “x,” parameter “y”
/proc..y = "string” Set phrase “main,” parameter “y”

Of these, the last looks somewhat surprising. It makes sense if you think of
the double-dot as a delimiter for an empty phrase name.

27

5.2.2 Pattern string syntax

Pattern strings place values at time points within the bar. The values come
from the parameter map. Timing comes from the items’ positions within the
string, based on the general idea of equal division of the bar.

Two characters are reserved: a space is a timing placeholder, and a vertical
bar, |, is a divider.

If the string has no dividers, then the items within it (including placehold-
ers) are equally spaced throughout the bar. This holds true even if it’s a non-
standard division: #4 (Figure 1) has seven characters in the string, producing
a septuplet.

If there are dividers, the measure’s duration will be divided first: n dividers
produce n + 1 units. Then, within each division, items will be equally spaced.
The spacing is independent for each division. For example, in #6 below, the
first division contains one item, but the second contains two. For all the divi-
sions to have the same duration, then, - in the second division should be half
as long as in the first.

3. "- " 4 J*J L
4.%- --- o ZJJJJJ
5]]-]-" 44444
6."-]--]--" 4 LIl

Figure 1: Some examples of cll rhythmic notation, with and without dividers.

Note: It isn’t exactly right to think of a space as a “rest.” "~ - " is not really
two quarter notes separated by quarter rests; it’s actually two half notes! If
you need to silence notes explicitly, then you should define an item in the
parameter map whose value is a Rest object.

N

8

5.2.3 Timing of multiple parameters

Each parameter can have its own timing, but a Pbind can play with only one
rhythm, raising a potential conflict.

The Pbind rhythm is determined by the pattern string for the defaultParm
declared in the process. When you set the defaultParm, the rhythm defined
in that string is assigned to the \dur key, where it drives the process’s timing.
Other parameters encode timing into a Pstep, to preserve the values’ positions
within the bar. Think of these as “sample-and-hold” values, where the control
value changes at times given by its own rhythm, but is sampled only at the times
given by the defaultParm rhythm.

For example, here, the default parameter’s rhythm is two half notes. At the
same time, a filter parameter changes on beats 1, 2 and 4. The process will play
two events, on beats 1 and 3. On beat 1, the filter will use its a value; on beat
3, it will use the most recent value, which is b. The filter will not change on beat
2, because there is no event occurring on that beat!

What about c? There is no event coming on or after beat 4, so ¢ will be
ignored in this case. But, if you add another note late in the bar, then it will
pick up c, without any other change needed.

/x = "--ms
/x.filt = "ab c¢"; // "c" is not heard
/x = "-|- ="; // now "c" is heard on beat 4.5

Listing 17: Multiple parameters with different timing.

5.2.4 Pitch notation

If a parameter’s map specifies isPitch: true, then it does not need to spec-
ify any other values and the rules described in Section 3.6.2 apply.

Note: Items in pitch sequences may include more than one character: 3 is
one note, as is 6+,~. They are converted into SequenceNote objects in the
pattern, because SequenceNotes can encode pitch and articulation informa-
tion. Post-processing in PR(\abstractLiveCode) extracts the articulation
value and assigns it to \legato (or \sustain for staccato notes).

To use pitched notes, I strongly recommend installing the ddwLivecodeln-
struments quark, and using the melBP process (or the other pitched processes
described in the tutorial), as demonstrated in Listing 18. The general proce-
dure is:

+ In your initialization script, package your instrument as a Voicer factory,
following the template shown. Note the following keys in the factory’s
dictionary:

29

// Initialization code

(

SynthDef (\sqrbass, { |out, freq = 110, gate = 1,
freqMul = 1.006, amp = 0.1,
filtMul = 3, filtDecay = 0.
lagTime 0.1]
var sig = Mix(

Pulse.ar(Lag.kr(freq, lagTime) * [1, freqMull,

) * amp,
filtEg = EnvGen.kr(

Env([filtMul, filtMul, 1], [@.005, filtDecayl],

gate
))

ampEg = EnvGen.kr(Env.adsr(0.01, 0.08, 0.5, 0.1),

gate, doneAction: 2);

12, ffreq = 2000, rq =

0.1,

0.5)

\exp),

sig = RLPF.ar(sig, (ffreq * filtEg).clip(20, 20000), rq);

Out.ar(out, (sig * ampEg).dup);
}) .add;

(

keys: #[master], // ~master comes from \loadAllCl.eval

defaultName: \sqrbs,
initLevel: -12.dbamp,
argPairs: #[amp, 0.5],
make: { |name|

var out;
~target = MixerChannel(name, s, 2, 2, ~initLevel,
~master);

out = Voicer (5, \sgrbass, target: ~target);
out.mapGlobal (\ffreq, nil, 300, \freq);
out.mapGlobal (\rq, nil, 0.2, \myrq);
out.mapGlobal (\filtMul, nil, 8, [1, 121);
out

3,

free: { ~target.free 3},

type: \vc) => Fact(\sqrbsVC);

)

// Performance code:
\loadAllCl.eval;
TempoClock.tempo = 132/60;

Mode (\fsloc) => Mode(\default);

/make (sqrbsVC/melBP:bs(octave:3));
/bs = "1_ 1.|5~3_9.4.|7.2~4_5".|5_8~2_4.";
/bs+;

/bs-;

Listing 18: A retro acid-house bassline, demonstrating pitch notation.

30

outbus:

- keys: Import items from the top environment. In particular, \1oadAl11Cl.eval
creates mixer channels ~master, ~rvbmc and ~shortrvbmec. You can
use these when creating the Voicer’s ~target mixer.

— defaultName: The name of the VC object that /make () will create.

— initLevel, initRvb: Not strictly necessary, but ddwLivecodelnstru-
ments uses these as a convention to set the levels of the mixer chan-
nel and reverb post-send.

— argPairs: Parameters and defaults specific to this instrument, to in-
ject into the note player when using the instrument. One convention
in ddwLivecodelnstruments is a default amplitude of 0.5, overriding
the default event prototype’s 0.1.

+ In performance, /make the instrument and a melBP process together.

+ Specify the key: Mode (\keyname) => Mode(\default). The “legacy exam-
ple” below uses F-sharp Locrian, hence Mode (\fsloc). (This is a global
setting; you do not need to repeat this step for every process.)

The particular benefit of a Voicer + melBP is that slurred notes will tie
across the bar line correctly. (cll needs to evaluate processes on every bar line,
whether a note sounds at that time or not. If a pitched note ties over the bar
line, the last note in the bar does not know when the next note in the bar will
occur. This is extremely difficult to handle using the default event prototype.
dadwLivecodelnstruments pitched processes use a custom event prototype, with
features of Voicer, to make it transparent to the user.)

If you must use only the basic features of cll (\1oadCl.eval), you can use
PR(\abstractLiveCode) and place a dummy PmonoArtic into postDefaults, as
in Listing 19.'2 If you do it this way, you lose support for accents, and notes
will not automatically tie across the bar line. You can work around this by
explicitly repeating the note in the next bar. This is very difficult to do with
generators, however.!?

5.2.5 Phrase selection

Statements to set the phrase sequence follow a different syntax:

/proc = (group...);
Listing 20: Syntax template for “Set pattern” phrase selection.

group can consist of any of the following elements:

I2Note the trick to get monophonic synthesis. Assigning a PmonoArtic into postDefaults effec-
tively turns the entire event-producing chain into a PmonoArtic—even if it adds no musically useful
information into the resulting events. Caveat: If you will have any notes slur across the barline,
make sure to include alwaysReset: true in the BP parameter dictionary.

131 present the PmonoArtic example only to demonstrate that it is possible. This way, however,
is not as powerful as melBP, so I maintain the recommendation to use melBP instead.

31

// Use the same SynthDef as in the previous example

BP (\acid).free;
PR(\abstractLiveCode).chuck (BP(\acid), nil, (
event: (eventKey: \default),
alwaysReset: true,
defaultParm: \degree,
parmMap: (
degree: (isPitch: true),

),
defaults: (
ffreq: 300, filtMul: 8, rq: 0.2,
octave: 3, root: 6, scale: Scale.locrian.semitones
)’
postDefaults: PmonoArtic(\sqrbass,
\dummy , 1
)
D)
TempoClock.tempo = 132/60;
)
/acid = "1_ 1.|5~3_9.4.|7.2~4_5".|5_8~2_4.";
/acid+;
/acid-;

Listing 19: Pitch notation in PR(\abstractLiveCode); not generally recommended.

32

Phrase ID The name of any phrase that’s already defined, or a regular expres-
sion in single quote marks. If more than one existing phrase matches the
regular expression, one of the matches will be chosen at random; e.g., to
choose randomly among phrases beginning with x, write '*x'.

Name sequence Two or more of any of these items, separated by dots and
enclosed in parentheses: (a@.a1.a2). These will be enclosed in Psegq.

Random selection Two or more of any of these items, separated by vertical
bars (|) and enclosed in parentheses: (a@|a1|a2). These will be enclosed
in Prand. One will be chosen before advancing to the next ID.

Phrase group A name, followed by two asterisks and a number of bars in the
phrase group. If a four-bar phrase is stored as a9, al, a2, and a3, you
can write it simply as axx4. The preprocessor will expand this to regular
expression matches, as if you had written ('*a@’.'*al’.'*a2'.'*a3").
The use of regular expression matching here is to make it easier to have
slight variations on the bars within the phrase group, while keeping the
same musical shape.

Any of these items may optionally attach a number of repeats *n: (ax3.b)
translates to Pseq([Pn(\a, 3), \bl, inf), and (a*3|b) to Prand([Pn(\a, 3),
\b], inf).

Items in a random selection may also attach a weight %w, which must be
given as an integer: (a%6|b%4) has a 60% chance of choosing a and a 40%
chance of b. If no weight is given, the default is 1. Weights are ignored for
sequences (separated by dots).

Groups may be nested, producing complex structures compactly. For exam-
ple, to have an 80% chance of a for four bars, then an 80% chance of b for two
bars, you would write:

((a%4|b)*4.(a|b%a)*2)
Listing 21: Nested phrase-selection groups.
You may also include both . and | in a single set of parentheses. The dot

(for sequence) takes precedence: (a.b|c) evaluates as ((a.b)|c).

5.3 Start/stop statement

The start/stop statement takes the following form:
« Start: /proc1/proc2/proc3+quant
» Stop: /procl1/proc2/proc3-quant

Any number of process names may be given, each with a leading slash.
quant, an integer, tells each process to start or stop on the next multiple
number of beats. In 4/4 time, /proc+4 will start the process on the next bar

33

line; /proc+8 will start on the next event-numbered bar line (i.e., every other
bar). quant is optional; if not given, each process will use its own internal quant
setting. By default, this is one bar; however, the setm helper function overrides
this for the given number of bars.

5.4 Make statement

The make statement instantiates one or more chucklib factories.

/make (factory@:targetName@ (parameters@)/factoryl:targetNamel (
parametersl1)/...);

// Or, with autoGui
/makex(factory@:targetName@ (parameters@)/factoryl:targetNamel (
parametersi1)/...);

Listing 22: Syntax template for make statements.

factory The name of a Fact object to create.

targetName (optional) The name under which to create the instance. If not
given, the make statement looks into the factory for the defaultName. If
not found, the factory’s name will be used.

parameters (optional) A dictionary of key: value pairs to insert into the Fac-
tory prior to making the resulting object, to override defaults. NOTE: It
is up to the Factory to pass values into the final object. Fact() does not
scan for unknown keys and automatically forward them.

Multiple factory:targetName pairs may be given, separated by slashes.
Both BP and VC factories are supported.

As noted earlier, the code to define cll processes is not performance-friendly.
Instead, you can write this code into Fact object, and then /make them as you
need them in performance.

(

// THIS PART IN THE INIT FILE
(

defaultName: \demo,

octave: 5, // a default octave

make: { |name|
PR(\abstractLiveCode).chuck(BP(name), nil, (
event: (eventKey: \default),
defaultParm: \degree,
parmMap: (degree: (isPitch: true)),
// Here, the Factory transmits ~octave
defaults: (octave: ~octave)
));
}, type: \bp) => Fact(\demoBP);
)

34

// DO THIS IN PERFORMANCE
/make (demoBP:dm(octave:6)); // :dm overrides defaultName

/dm = "1353427,5,";
/dm+;

/dm-;

/dm(free);

Listing 23: Example of the make statement.

/makex instead of /make will try to chuck process or voicer mixers into
chucklib MCG objects, for display in a mixing board, and voicers into empty
chucklib VP objects, for speed in setting up players during performance. MCG
and VP arrays are created by BP.loadGui.

Parameters: ddwChucklib has two ways to write a “chuck” operation:

« Simplified: source =>.adverb target, or

» Complete: source.chuck(target, adverb, parameters) (parametersisa
dictionary, usually written in Event-style syntax).

Different object types may handle the parameters differently. The cll /make
statement supports Fact() as a source, which imports the parameters into the
factory’s environment before making the result. The parameters are available
to the factory, which may choose to insert them into the resulting object in
whatever way is needed. Because Event-style syntax already encloses the names
and values in parentheses, the /make statement simply reads the dictionary
directly in the argument list.

Voicers and BPs: If a single /make statement produces first a Voicer and
then a BP, /make will additionally assign the Voicer to play the BP’s notes, sav-
ing the time in performance of writing an additional VC(\name) => BP(\name)
command.

5.5 Passthrough statement

The passthrough statement takes arbitrary SuperCollider code, enclosed in
parentheses, and applies it to any existing chucklib object. If no class is speci-
fied, BP is assumed. No syntax checking is done in the preprocessor, apart from
counting parentheses to know which one really ends the statement.

// This...
/snr(clock = ~myTempoClock);

// ... is the same as running:
BP (\snr).clock = ~myTempoClock;

// Or...

35

/VC.bass(releaseAll); // VC(\bass).releaseAll;
Listing 24: Syntax template for passthrough statements.

5.6 Chuck statement

The chuck statement is a shortcut for chucking any existing chucklib object into
some other object. If no class is given, BP is assumed.

// This...
/snr => MCG(0Q);

// ... is the same as running:
BP(\snr) => MCG(0Q);

// Or...
/VC.keys => MCG(Q); // VC(\keys) => MCG(9Q);
Listing 25: Syntax template for Chuck statements.

5.7 Func call statement

The Func call statement is a shortcut to evaluate a function saved in chucklib’s
Func collection. This makes it easier to use helper functions. No syntax checking
is done in the preprocessor.

/func.(arguments);

// e.g.:
/bars.(\proc, 2, \a);

Listing 26: Syntax template for func-call statements.

Note: The dot after the function name is critical! Without it, the statement
looks exactly like a passthrough, and the preprocessor will treat it as such.

5.8 Copy or transfer statement

Copy/transfer statements create additional copies of phrases, so that you can
transform the material while keeping the old copy. Then you can switch be-
tween the old and new versions, setting up a musical form.

/proc.phrasexn -> newPhrase; // copy

/proc.phrasexn ->> newPhrase; // transfer

Listing 27: Syntax template for copy/transfer statements.

36

proc The process on which to operate.
phrase The phrase name to copy.

n (optional) If given, copy a multi-bar phrase group, treating phrase as the
prefix. /proc.a*2 -> b will copy a0 to bo and a1 to b1. (If n is omitted,
both phrase and newPhrase will be used literally.)

newPhrase The name under which to store a copy. If n is given, this is a phrase
group prefix.

The difference between “copy” and “transfer” is:

» Copy (->) simply duplicates the phrase information, but continues play-
ing the original phrases. If you change the new copies, you won’t hear
the changes until you change the phrase selection pattern. This is good
for preparing new material and switching to it suddenly.

« Transfer (->>) duplicates the phrase information and modifies the phrase
selection pattern, replacing every instance of the old phrase name with
the new.'* Changing the new copies will now be heard immediately. This
is good for slowly evolving new material, while keeping the option to
switch back to an older (presumably simpler) version later.

5.9 Show pattern statement

Less a “statement” than an interface convenience, this feature looks up the
string for a given phrase and parameter, and inserts it into the code document.
Invoke this behavior by typing /proc.phrase.parm and evaluating the line by
itself. As in other contexts, phrase and parm are optional and default to main
and the process’s defaul tParm respectively. For a multi-bar phrase group, type
/proc.phrasexn.parm (where n is the number of bars in the group.)

This is useful after a copy/transfer statement.

n n

/snr.a = - ="
/snr.a -> b;
/snr.b // now hit ctrl-return at the end of this line

// the line magically changes to

" "

/snr.b = - ="

Listing 28: Demonstration of “Show pattern” statements.

141t does this by producing a compileString from the phrase selection pattern, performing string
replacement, and then recompiling the pattern. This should work with all cll phrase selection
strings (Section 5.2.5). It is not guaranteed to work with hand-written patterns that generate phrase
names algorithmically.

37

Note: You must be using SuperCollider IDE 3.7 or above. Automatic code
insertion is not supported for other editors or older IDE versions.

5.10 Helper functions

A few “helper functions” are defined, to simplify common tasks:

* /changeMeter. (beatsPerBar, clock, barBeat, newBaseBarBeat): Setthe
meter. The last three arguments are optional. If the last three are omitted,
it will set beatsPerBar on the default TempoClock, on the next barline.

» /changeTempo. (tempo, clock, barBeat): Set the tempo (beats per sec-
ond). The last two arguments are optional (default TempoClock, and the
next barline). This is mainly to simplify group performances using the
Utopia quark’s BeaconClock.

+ /changeKey. (\modeName): Assign the named Mode object to Mode (\default).
All processes using the default mode will switch to the new key immedi-
ately.

» /globalSwing. (array): Set an array defining swing subdivisions. To
swing 16th-notes, the array’s values should add up to 0.5 (eighth-note),
e.g. [0.3, 0.2]. (Individual processes may override the global swing:
/name(swing = array).

Also, three Func definitions are provided to make it easier to work with
multi-bar phrase groups. I will introduce them using cll Func call statement
syntax (Section 5.7).

/setupbars. (\proc, n, \prefix) Create empty phrases for prefixe, prefixi
up to n — 1. This also inserts Set pattern (Section 5.2) templates into the
code document, for you to start filling in musical material.

/setm. (\proc, n, \prefix) Set the process’s phrase selection pattern to play
this phrase group. It also changes quant in the process, so that starting
and stopping the process will align to the proper number of bars.

/bars. (\proc, n, \prefix) Calls both setupbars and setm at once.

A typical sequence of performance instructions for me is:
/make (kick);
/bars.(\kick, 2, \a);

// the following lines are automatically inserted
/kick.a0@ = "";
/kick.al = "";

Listing 29: Common initialization sequence, using helper functions.

38

After the templates appear, I edit the strings to produce the rhythms I want,
and then launch the process with /kick+. In this example, the phrase group
occupies two bars. setm automatically sets the process’s quant to two bars, so
the process will then launch on an even-numbered barline.

5.11 (Deprecated) Randomizer statement

Previous versions included a “randomizer” statement. Generators are far more
powerful. The code remains for backward compatibility, but it will be undoc-
umented and not officially supported going forward.

6 Generators

The basic syntax of the Set pattern statement (Section 5.2) denotes fixed note se-
quences, which always play exactly the same events. Generators create phrases
whose contents can change on each iteration, adding another dimension of
musical interest.

6.1 Generator design

Generators manipulate lists of events, provided by a “chain” operator, one bar
at a time.

Note: January 2020: Generator syntax has changed from previous versions.
Previously, the source event list was specified as the first argument to a
generator. Now, the chain operator provides all generator source lists; the
first argument is removed. Old scripts will have to be rewritten.

At present, generators divide into these main categories:

» Rhythm generators insert new items into the event list, or delete them.
New items may be event characters directly, or wildcards to be replaced
by the second category.

« Content generators replace wildcards with user-specified values.

« Filter generators alter the flow of control.

These are not the only possible generator types, and there is no prescribed
sequence for using them. However, it’s been most successful so far to use a
rhythm generator to embellish a base rhythm, and then apply a content gener-
ator to “fill in” the new rhythmic elements.

(

BP(\y).free;

PR(\abstractLiveCode).chuck (BP(\y), nil, (
event: (eventKey: \default),

39

defaultParm: \degree,

parmMap: (degree: (isPitch: true))
));
)

TempoClock.tempo = 140/60;

/y = "12 4| 5 6| 12 |45"; // A

/y+;

/y = "[xx %] % x| %% |xx]::\seq("12456", "%x")"; // B

/y = "Dxxo x| ok x| okx [wk]::\seq("12456", "x")::\ins("x", 7,
0.25)"; // C

/y = "Dxx x| ok x| okx [wk]::\seq("12456", "x")::\ins("x", 7,
0.25)::\seq("6,214", "x")"; // D

’y=;

Listing 30: Isorhythmic cycles with generators.

Listing 30 demonstrates one possibility. The initial idea is a cycle of five
pitches laid over nine notes within a bar. Without generators, it’s necessary to
drop one pitch at the end of every bar (A). But, using the \seq() generator, we
can specify the rhythm using a * wildcard; \seq() replaces each wildcard with
successive pitches. \seq also remembers its state from one bar to the next, so,
in this example, the first bar will begin with 1 and the second, with 6 (B).

To add the first generator, wrap the source string in square brackets (indi-
cating that it is a source), and “chain” (: :) the generator onto it. The :: oper-
ator takes the previous result (here, the source) and feeds it into the following
generator.

Generators are “composed” by chaining further generators. \ins("*", 7,
0.25) inserts seven wildcards at randomly chosen 1/4-beat positions (C).
(There are 16 per bar, and 9 are already occupied, so this will fill all the empty
rhythmic positions.) * is not a valid pitch specifier, so these are performed as
rests. Chaining one more layer, another \seq() (D), overlays a new cycle, four
notes this time. The result is a shifting arpeggiation that should repeat every
20 bars—but written as a single bar’s pattern string.

6.2 Generator usage
6.2.1 Generators and pattern strings

Generators are invoked using the syntax \name(arguments) within a “set pat-
tern” string.

As noted earlier, every item in a pattern string occupies a span of time
within the bar, beginning at its metrical position and continuing until the met-

40

B. "\ins(, ".", 4, 0.5)"

\ins(, ".”, 4, 0.5)

1 2 3

C. " \ins(, "=", 1, D||Ix"

\ins(, ".", 1, 1)

D. "\fork(, " \ins(, "-=", 1, D||[x")"

\ins(, ".", 1, 1)

\fork(, "...")

Figure 2: Time spans of items in pattern strings.

41

rical position of the next item (or the end of the bar). (Spaces in the pattern
string are placeholders, not items.) In Figure 2, example A, the first - begins
on beat 2 and extends until the next item, a . on beat 3.25, and so on un-
til the end of the bar. The pattern string puts nothing at the beginning of the
bar—remember, spaces and dividers are not items. During generator process-
ing, literally nothing is in this space. When it’s time to play the bar’s contents,
a rest event will be inserted, but this does not affect playback.

A generator expression, from the opening backslash to the closing parenthe-
sis, counts as one item, whose span is determined in the same way. The simplest
case is Figure 2, example B, where a single generator occupies the entire bar
(there are no spaces or dividers before it, and no items after it). In example C,
the generator begins on the second eighth-note, and its span is terminated by
an x on beat 4.

Metrical position is especially important for the insert \ins() generator.
\ins() chooses metrical positions randomly from a “grid” determined by the
generator’s starting position and the quant argument (fourth in the list). In
example B, \ins() starts at the beginning of the bar, and the grid is in half-
beats (eighth-notes). Example C’s \ins() grid is in quarter-notes, but beginning
off the beat—syncopation—and the generator ends at beat 4. Beat 4.5 matches
the “syncopated quarter-note” specification, but it is outside the generator’s
bounds, so it is unavailable to this \ins() instance.

This poses a problem for chaining generators. You can :: chain a second
generator only onto another generator, not normal items. But the generator
occupies beats 1.5-4 only; therefore, a chained generator can apply only to
this time span, not the entire bar. CIl’s solution is a filter generator, \fork(),
which positions sub-generators within its own time span. In example D, the
same \ins() generator occurs within a \fork(). The \ins() still applies only
to beats 1.5-4, but the \fork() is the only item in the bar and covers the entire
span. If you chain additional generators onto the \fork(), they will likewise
cover the entire bar.

Listing 31 provides some playable examples. In Example 3, beat 2 contains
four items: 6,, \rand(...), space and space. Thus beat 2 is subdivided into
16th-notes, and the generator begins on the second of those.

Note: \ins("new”, num, quant) inserts num new items at possible time
points quant beats apart. These time points are measured from the begin-
ning of the generator. In Listing 31, examples 3 and 4 offset the generator
by one 16th-note—so \ins() will syncopate by a 16th.

Source strings will be compressed to fit into the available duration. In ex-
ample 2, from the source [6,] to the end of the bar is 3 beats, so [6, | |7]
would be correct. [6, || |7] would divide the 3 beats into 4 subdivisions.

42

/7 1.
/y =

/y+;

/7 2.

Chain starts on the downbeat and occupies the whole bar.
"C1,1::Nins("x", 3, ©0.5)::\rand("13467", "x")";

Chain starts on beat 2

// Note that a generator source can appear
// anywhere within the bar!

/y = "1,|[6,]::\ins("*", 3, 0.5)::\rand("13467", "x")||";
// 3. Chain starts on the 2nd 16th-note of beat 2

// Here, '6,' occupies time and is not a generator source.
// So it is not bracketed.

/y = "1,16,\ins("*", 3, ©0.5)::\rand("13467", "x") ||";

// 4. Chain starts on the 2nd 16th-note of beat 2

// and stop on the 'and' of 4

/y = "1,]16,\ins("*", 3, 0.5)::\rand("13467", "x") || x";
’y=;

Listing 31: Interaction between generator syntax and “set pattern” rhythmic notation.

6.2.2 Generator arguments

Every generator expression currently requires an argument list in parentheses
following the generator’s name. (If a generator doesn’t require arguments, an
empty pair of parentheses is currently still required. I may remove this require-
ment later, but for now, it’s not optional.)

Arguments are separated by commas.

Simple arguments are as follows;

* A number, which may be written as follows:

— An integer (12) or floating-point number (1.5).

An integer range: 1. . 3. Especially useful for arguments representing
a number of notes to insert or process.

A fraction: 1/3.
A tuplet: e.g., 3:4 means “three notes in the space of a quarter note.”

A pass-through expression in curly braces: {rrand(1, 4) * 0.5} for
0.5, 1.0, 1.5, 2.0.

Note: Currently, pass-through expressions in braces may not contain back-
slashes. If you need to refer to a symbol, use 'singlequote’ symbol literal

syntax.

43

» A Symbol, written in LISP style with an opening backtick: *name.

Pool arguments provide collections of items. Currently, pools are used in

two ways:

+ A list of wildcards for matching. For instance, the source string may in-
clude wildcards * and @. A wildcard string "*" means that the generator
will apply only to asterisks. ("*@" would match both.)

+ A sequence of items with which to replace a wildcard (or, for rhythm
generators, to insert directly). This type of pool may be written as an
item string (where each item has equal probability of being chosen, as in
Prand) or as a subset of certain sequencing generators:

\seq()
\ser()
\rand()
\wrand()
\xrand()
\shuf ()

See Listing 40 for examples of complex sequences produced by
nested generators.

When used in a pool argument, a number of repeats may be specified
as follows: \seg*n(args) where n is any of the numeric expressions
described above. For example, if you want to embed a sequence of
six notes, always starting from the beginning but randomly embed-
ding 3 to 6 steps, write \ins(\serx3..6("123456"), ...) (where
\ins() or another one of the 6.4.1 determines the rhythm).

Quotes for pool strings should not be escaped with backslashes, even though
these quoted strings appear within quotes. The set pattern parser reads the
pattern string up to a closing quote that appears outside generator expressions.

6.3 Wildcard matching

Many generators include a wildcards argument. If omitted, the generator will
apply to all items with its timespan. Otherwise, it will operate only on items
that were produced by that generator. For example, if I want to choke off all
open hi-hats after 0.25 beats, but leave closed hi-hats alone, I can specify "-"
for wildcards.

TempoClock.tempo = 124/60;
/hh.(\synthhh);

/shh = "\ins("-", 2, 0.5)::\ins("."”, 8, ©.5)::\choke(0.25, ".",
nomyn

/shh+

/shh-

44

6.4 Built-in generators
6.4.1 Rhythm generators

\ins("new items”, numToAdd, quant) Locatesunoccupied metric positions within
the bar, every quant beats apart beginning with the generator’s onset
time, chooses numToAdd of them randomly, and inserts new items at
those positions.

\shift("shiftable items"”, numToShift, quant) Locates numToShift occur-
rences of the shiftable items within the source (they must already exist),
and moves them forward or back by quant beats. A good way to get syn-
copation is to insert items on a strong beat, and then shift them by a
smaller subdivision.

\rot(quant) Add quant to every item’s onset time, and wrap all the times into
the generator’s boundaries: basically, a strict canon.

// Reich, "Piano Phase"”-ish

(

BP(\y).free;

PR(\abstractLiveCode).chuck(BP(\y), nil, (
event: (eventKey: \default, pan: -0.6),
defaultParm: \degree,
parmMap: (degree: (isPitch: true))

));

BP(\z).free;

PR(\abstractLiveCode).chuck(BP(\z), nil, (
event: (eventKey: \default, pan: 0.6),
defaultParm: \degree,
parmMap: (degree: (isPitch: true))

D)

)

TempoClock.setMeterAtBeat (3, TempoClock.nextBar);
TempoClock.tempo = 112/60;

Jy = "[xrkrxrkrxrxnl:\seq("268", "x")::\seq("37", "A")";

/Z - ”I:*"*A*A*A*A*":l::\Seq(”268”, Y’*”)::\Seq(”37”, u,\n)u;

/ylz+;

/z = "[x*xAxMxrkrkr T \seq (268", "x")::\seq("37", "*")::
\rot(-0.25)";

/z = "[xMxAxAxrkrkr T \seq (268", "x")::\seq("37", "*")::
\rot(-0.5)";

45

/z = "[F xAxMkAxAxAT 0 \seq (268", "*x")::\seq("37", "r")::
\rot(-0.75)";

/ylz-;
Listing 32: Usage of \rot() generator.

\delta("new items”, quant, weights...) Additems into the source based on
random selection of event deltas, as multiples of quant. If quant is 0.25,
then the first weight is for 0.25, the second for 0.5 and so on; \delta(,
"x" 0.25, 3, 1, 2) would choose deltas according to Pwrand(@.25 *
(1, 2, 31, [3, 1, 2].normalizeSum, inf). The next delta is added to
the current position to find the position for the next item, until reaching
the end of the timespan.

\pdelta("new items"”, quant, "deltapool”) Like \delta(), except where \delta()
always uses Pwrand to produce the durations, \pdelta() allows you to se-
quence multiples of quant. A 1 in the deltapool string is 1 times quant; 2
is 2 times quant and so on. A standard hi-hat pattern that could then be
written \pdelta(\seq("”..-"), 0.25, \seq("112")).

\rDelta("new items”, maxDelta, factor, minNotes, maxNotes, distribution, parameters)
Like \delta(), but generates deltas from one of six random functions
(whereas \delta() corresponds only to Pwrand()). It is, then, non-metric.
* "new items": A pool string supplying items to insert.
» maxDelta: The largest duration allowed.
« factor: Calculates the shortest duration = maxDelta / factor.
» minNotes: Require a certain minimum number of notes.
+ maxNotes: Constrain to a certain maximum number of notes.

+ distribution: A symbol *1lin, “exp, ‘hp, ‘1p, ‘beta, ‘expb. See the
example.

 parameters: Numbers supplied as additional arguments to the delta
pattern. Currently used only by ‘beta (supply alpha and beta) and
*expb (supply spread).

// equal distribution

// but more total time spent on longer notes

/y = "\rDelta("*", 1, 8, , , ‘lin)::\wrand(”"\xrand("12345")
\xrand("3'4'5'6"'")", 2, 1)";

/y+
// equal total time spent on longer notes vs shorter

/y = "\rDelta("*", 1, 8, , , ‘exp)::\wrand("\xrand("12345")
\xrand("3'4'5'6"'")", 2, 1)";

46

// Phprand
/y = "\rDelta("x", 1, 8, , , ‘“hp)::\wrand("\xrand("12345")
\xrand("3'4'5'6"'")", 2, 1)";

// Plprand
/y = "\rDelta("*", 1, 8, , , ‘lp)::\wrand("\xrand("12345")
\xrand("3'4'5'6"'")", 2, 1)";

// beta distribution: similar problem as ‘lin
/y = "\rDelta("*", 1, 8, , , ‘beta, 0.2, 0.2)::\wrand("
\xrand ("12345")\xrand("3'4'5'6"'")", 2, 1)";

// expb: "exponentialized"” beta distribution
/y = "\rDelta("x", 1, 8, , , ‘expb, ©.2)::\wrand("\xrand("
12345")\xrand("3'4'5'6"'")", 2, 1)";

/y-
Listing 33: Usage of \rDelta() generator.

\ramp(”"new items"”, initDelta, midDelta, midpoint, curve) Generates ac-
celerating and decelerating rhythms. To use this effectively, think of the
\ramp() generator’s time span as being normalized: 0 is the beginning of
the span and 1 is the end. Within that span, the generator will ramp from
an initial duration to a target, and back to the start duration.

* "new items"”: A pool string supplying items to insert.
+ initDelta: The duration at the beginning of the time span.
» midDelta: The target duration.

* midpoint: Where, between 0 and 1, to arrive at midDelta. If 1,
midDelta is placed at the end, and the ramp will go from initDelta
to midDelta (the most common use case). If 0, midDelta is at the
beginning, and the ramp goes in the opposite direction (so, you can
choose randomly between acceleration and deceleration by writing
{2.rand} here). @ < midpoint < 1 creates a two-segment curve.

« curve: Curvature types from Env are supported: numbers, or ‘lin,
‘exp etc. A curvature number applies to the first segment, and will
be negated for the second.

/y = "N\ramp("x", 1, 0.2, 1, ‘exp)::\pitch("*", "2", 0, @)";

/y+

// randomly choose accel or decel

/y = "\ramp("*", 1, 0.2, {2.rand}, ‘exp)::\pitch("*x", "2",
0, 0)";

// alternate between accel and decel

47

/y = "\ramp("x", 1, 0.2, {Pseq([0, 11, inf)}, ‘exp)::\pitch
2 6 0y

/y = "Nramp("*", 1, 0.2, 0.5, ‘exp)::\pitch("*x", "2", 0, 0)

// pulls 1 -> 0.2 curve to the right, biasing long
durations

/y = "Nramp("*", 1, 0.2, 0.5, 2)::\pitch("*", "2", 0, 0)";

// pulls 1 -> 0.2 curve to the left, biasing short
durations

/y = "Nramp("x", 1, 0.2, 0.5, =-2)::\pitch("*", "2") @, 0)";
/y = "\ramp("x", 1, 0.2, 0.5, -4)::\pitch("*x", "2", @, 0)";
/y-

Listing 34: Usage of \ramp() generator.

\choke(maxDur, "new items", "wildcards”) For every item within the time
span, insert an item maxDur beats later (unless the next item comes at
that time point or earlier). \choke("-||-.|", 1, ".") will insert a . at
beat 2, because it is one beat later than the first item’s position, and there
is no other item already “choking off” that note. Beat 4 does not receive
an extra item, because the - on beat 3 is already choked off a half beat
later.

\stutt("new items"”, numToAdd, quant, prob, "insItem”, "wildcards”, "setWildcards")

Choose up to numToAdd matching items and stutter them according to
quant. New items determines the items to match (if omitted, it matches
any items, also taking wildcards into account). At quant intervals, a new
item is inserted if prob.coin is true. insitem specifies the item to insert;
if omitted, it will insert a copy of the existing item. setWildcards al-
lows you to distinguish between source items and stutt-inserted items in
downstream processing.

\stuttDur("new items”, numToAdd, quant, prob, addDur, "insItem”, "wildcards”, "setWildcards")
Like \stutt(), except that addDur is a maximum duration over which
to repeat/subdivide each item. This may produce jittery patterns with
empty space in between.

\stuttN(("new items"”, numToAdd, quant, prob, numInclusive, "insItem"”, "wildcards”, "setWildcards
Like \stutt(), except that addDur is a maximum number of new items
to add.

\stuttPitch("match items”, numToAdd, quant, prob, numInclusive, "intervals", "articPool”, wildca

Like \stuttN(), except that new items are calculated from intervals, sim-
ilar to \pitch(). The following expressions are equivalent:

48

\ins("*", 1..2, ©0.5)::\stuttN(, 1..2, @.25, 1, 5, "@", "x
"Y::\pitch("@", "6,7,23", -4, 4)

\ins("*", 1..2, 0.5)::\stuttPitch(, 1..2, ©.25, 1, 5, "
6.7.23", . mxn n@ny

\div("new items”, "replaceltems”, numToAdd, quant, divisor, divisible)
Choose up to numToAdd matching items (taken from replaceltems, which
must be at least quant beats long, and divide their duration by divisor,
inserting items from new items. Divisible can further prevent short notes
from being divided; if quant is 0.5 and divisible is 2.5, notes of duration
2.0 will not be divided.

\euclid("new items"”, quant, increment, initial) Euclidean rhythm gen-
erator. Operating on a grid defined by quant, increment is the step size
and initial is the shift amount. Both of these are numeric proxies, so
you can randomize them using range numbers or curly-brace-enclosed
passthrough expressions.

\golomb("new items”, quant, minimum) A Golomb ruler divides a number
into quantized steps, where each partition is unequal. The total time to
be partitioned comes from the generator’s duration and cannot be over-
ridden. quant is the rhythmic value to divide into, and minimum is the
smallest integer number of quant steps that will be permitted. If quant
= 0.25 (16th-note), then minimum = 2 means that nothing shorter than
an eighth note will be produced. NOTE: If minimum is too high, there
may not be a valid partition; in that case, it will fall back to the previous
successful minimum, or to 1.

\unis('srcParm, "new items”, srcBP) Copy items, or rhythm, from another
process (“unison”). The other process should have leadTime > @ to guar-
antee that it evaluates first (you can set leadTime while a process is play-
ing). SrcParm is the parameter name from the other process, as a symbol
*name; srcBP is the name of the other process. If you specify items in new
items, they will replace the values from the other process. For a fairly
complex example, let’s play block chords in a pad, and then have an
arpeggiator follow the top note’s rhythm. The first use of \unis() here
makes sure the arpeggiator plays the highest note (1) at the same time
the pad moves to another chord. In /arp. . top, the \unis() follows the
top note’s rhythm and pitch, and in /arp. .acc, it adds an accent to the
top notes only.

TempoClock.tempo = 124/60;

/make (anapadVC:pad/chordBP:ch(chords:\bigch));
/ch(leadTime = 0.01);

/ch = "\delta("*", 0.5, @, 1, 2, 2)::\shuf("0976")";
/ch+

49

/make (pulseLeadVC:pl/arpegBP:arp(chords:\bigch));

/arp = "\unis(‘note, "1", ‘ch)::\ins("*", 16, 0.25)::\seq("”
23456") ::\artic(".")";

/arp..top = "\unis(‘'note, , ‘ch)”;

/arp..acc = "\unis('top, ">", ‘arp)::\choke(0.25, "-=-")";

/arp+

VC(\pad).v.gui; VC(\pl).v.gui; // adjust filters

Listing 35: Using the unis() generator to coordinate two harmony processes.

\par("rhythm”, "replacer1”, "replacer2”...) Produces multiple parallel lay-
ers following the same rhythm template. For each replacer, "rhythm” is
evaluated once (to produce wildcards), and then the replacer is evaluated
to fill in that layer. Good for minimalist textures, e.g.

\par ("\ins("%", 8..12, ©0.25)", "\seq("785")", "\seq(”237,")
C\seq("4,11,")")

6.4.2 Wildcard-replacement generators

Note that \seq(), \ser(), \rand(), \wrand(), \xrand(), and \shuf () are based
on the corresponding SuperCollider patterns Pseq, Pser, Prand etc., particularly
for the number of repeats (generally a number of single values to return, except
for \seq()).

\seq("items”, "wildcards”, reset) Replaces wildcards in the source with
items, one by one, preserving order. Reset is optional; if it’s a number
greater than 0, the item sequence will reset on every bar.

\ser("items”, "wildcards"”, reset) Like \seq(), but the number of repeats
determines how many notes will be output, not how many repetitions
of the entire phrase. When used for wildcard-replacement, it is indistin-
guishable from \seq(). Used in a pool argument, however, compare the
following (using \y defined in Listing 30):

/y = "\ins("x", 8, 0.5)::\seq("\seq*2..4("1234")\seq("875")
"y

/y+

/y = "\ins("x", 8, 0.5)::\seq("\ser*2..4("1234")\seq("875")
"y

/y-

Listing 36: Usage of \ser() generator.

\rand("items"”, "wildcards") Like \seq(), but chooses from items randomly.
(Reset is not relevant, as there is no order to preserve.)

50

\wrand(”items"”, "wildcards”, weighto, weightl, weight2...) Weighted ran-
dom selection, like Pwrand. WeightO is associated with the first element
of items; weight1 with the second, and so on. The generator automatically
does normalizeSum on the weights, so you don’t have to worry about mak-
ing them add up to 1.0. Do not enclose the weights in array brackets. (As
in \rand(), reset is irrelevant.)

\xrand("items"”, "wildcards”, reset) Reads theitemsin random order with-
out repeating the same item twice in a row, like Pxrand.

\shuf("items”, "wildcards"”, reset) Shuffles the items into random order,
and returns each one before choosing a new order. If embedded into a
composite sequence with a finite number of repeats, the shuffle-stream is
maintained throughout. That is, in \seq("”1''\shuf*3(”12345")"), all 5
items must be used exactly once before repeating any, even though only
3 are streamed out at a time. See Pnshuf() in the ddwPatterns quark.

\shufn(”items"”, "wildcards”, reset) Shuffles repeats items into random
order. This is like \shuf() except that, in a composite sequence, every
time the stream enters \shufn(), the order is chosen with no memory of
past iterations.

\first("init items"”, "items"”, "wildcards”, reset) Like \rand(), but, when
reset, it begins with a sequence of the “init items”: Pseq([Pseq(init_items,
1), Prand(items, inf)1). Without this, it can be difficult to start at a
specific place at the beginning of a bar. IMPORTANT: Per Section 6.5, if
\first() is embedded, then reset must be enabled in the generator into
which it’s embedded. Currently there is no good way around this. See
Listing 44.

\pdefn(*pdefnKey, "wildcards") Like \seq(), butobtaining replacement items
from a Pdefn. For non-pitched parameters, the Pdefn should yield char-
acters corresponding to parmMap items. For pitched parameters, it should
yield e.g. SequenceNote(degree, nil, length) where length is 0.4 for
staccato, 0.9 for legato (but rearticulating the next note) and 1.01 for
slurred.

+ Pdefn streams are shared globally across all instances of this gen-
erator for this process. With care, you can create sequential patterns
spanning barlines.

» The behavior of reset > 0 is undefined.

Pdefn(\y, Pn(Pseries(@, 1, 8), inf).collect { |d]
SequenceNote(d, nil, 0.9) });

/y.a@ = "[x]::\ins("x", 2, ©.5)::\pdefn(‘y, "*x")";
/y.al "\ins("*", 3, @0.5)::\pdefn(‘'y, "*")";

51

7y = (ax*x2);
Listing 37: Usage of \pdefn() generator.

\gdefn(‘pdefnKey, "wildcards") Like \pdefn(), with a difference: \pdefn()
keeps an independent repository of streams for every BP, while \gdefn()
keeps a global repository shared among all BPs. However... be careful; this
does not work the way you think. Cll generates all of the events for one
phrase at one time. In the following example, you might expect values to
alternate between /x and /y. Instead, four values are assigned to /x first,
and then four to /y, and these are streamed out over the course of one
bar.

(
BP(\x).free;
PR(\abstractLiveCode).chuck(BP(\x), nil, (
event: (play: { ~x.debug(~collIndex) 1}),
defaultParm: \x,
parmMap: (
x: ($0: @, $1: 1, $2: 2, $3: 3, $4: 4)
),
));

BP(\y).free;
PR(\abstractLiveCode).chuck(BP(\y), nil, (
event: (play: { ~x.debug(~collIndex) 1}),
defaultParm: \x,
parmMap: (
x: ($0: @, $1: 1, $2: 2, $3: 3, $4: 4)
)
));

BP(\x).leadTime = 0.07;
Pdefn(\x, Pseq("01234", inf).trace(prefix: "pdefn: "));

)

/x = "[xxx%x]::\gdefn('x, "x", 1)";
/y = "[x*x%]::\gdefn(x, "*", 1)";
/x/y+

/x/y-

Listing 38: Usage of \gdefn() generator.

Expected x | Expected y | Actual x | Actual y
0 1 0 4
2 3 1 0
4 0 2 1
1 2 3 2

52

\prev(”items"”, "wildcards"”, staccDur) Replaces any wildcards with either:
one of the items (which is equivalent to \rand(); generally, you should
leave items empty), or the previous item found in the bar. Useful for re-
peating notes. For pitched parameters, if the repeated note’s eventual
duration <= staccDur, its articulation will be made staccato. NOTE: If a
wildcard is the first item in the bar, then there is no previous item. In this
case, \prev() will try to determine the last item from the previous bar.
If this fails, a warning will be posted and the wildcard will become a rest
(silent).

\repeat1("items”, "wildcards"”, reset, repeats) Repeatsevery value from
the "items"” stream. \repeat1(\seq("1234"), "x", , 2) would output1,
1, 2, 2, 3, 3, 4, 4 etc. the number of repeats may be randomized.

\pitch("wildcards"”, "intervalPool"”, fallbackMin, fallbackMax, "articPool")
Valid for pitched parameters only. Replaces wildcards with “Brownian
motion” melody. Each wildcard will search backward for the previous
note. Then, one of the intervals will be chosen from intervalPool and added
to the previous note. Intervals are written relative to the scale root: 1 is
unison (no movement), 2 is up a second, 8 is up an octave, and 6, is a
third down (e.g., in C major, 6 is up a sixth = A, and 6, lowers this by
an octave to be the A a third below the root). If there is no previous note,
a pitch will be chosen randomly between fallbackMin and fallbackMax
(given as integers, where 0 = root). For each note, and articulation will
be chosen randomly from articPool; if omitted, new notes will use the
default “unslurred, legato” articulation.

\pitch2("wildcards"”, "intervalPool”, fallbackMin, fallbackMax, "articPool”, connect)
Like \pitch(), but it remembers the previous pitch that it generated, in-
stead of looking back for every wildcard. This may be used to produce
multiple, interlocking lines. NOTE: This generator resets every bar; un-
constrained Brownian motion is risky.

TempoClock.tempo = 140/60;
Mode (\cphr) => Mode(\default);

/make (pulselLeadVC:pl/melBP:pl);

// Every "6,7," descending pattern starts at the previous
given note

/pl = "[5'>] 3'>|4'> 2'>|]::\ins("*", 5..10, ©0.25)::\pitch
("x", "6,7,", 8, 10, ".")";

/pl+

// The first descent starts from "5'" and keeps going down
through the bar

/pl = "[5'>] 3'>|4'> 2'>|]::\ins("*", 5..10, 0.25)::
\pitch2("*", "6,7,", 8, 10, ".")";

53

// One \pitch() stream;
// another interlocking \pitch2() stream in a higher

register

/pl = "[5'>] 3'>[4'> 2'>|]::\ins("*", 3..7, 0.25)::\ins("@
", 3..8, 0.25)::\pitch("x", "6,7,", 8, 10, ".")::
\pitch2("e", "6,7,23", 14, 18, ".", 0)";

/pl-
Listing 39: Usage of \pitch() and \pitch2() generators.

\walk("items", steps, "wildcards”, offset, wrap) A random walk. items
are taken in order (unlike other item pools). steps should be either a
number proxy, or a pitch-style string where "2" steps forward by one, and
"7," steps backward one. offset is the starting position in the pool string.
If wrap is 0, the random walk will reverse direction when it encounters
a boundary; if nonzero, it will wrap around to the other boundary in
that case. (wrap is reevaluated every time a boundary is crossed.) If this
pattern is embedded in a sequence with a finite number of repeats, it will
a/ remember its previous state and continue from where it left off, and
b/ re-evaluate offset each time.

\skip("sequence pattern”, numToPlay, numToSkip, wildcards, reset) From
the sequence pattern, alternately pass through numToPlay items, then skip
over numToSkip items. For example, a gapped scale pattern could be writ-
ten \skip("\seq("12345678")", 2..5, 1..2).

\voss("weights", "wildcards”) 1/f noise, using a modified Voss algorithm.
The number of generators comes from the weights string, which also
controls the relative influence of each, where 1 or 2 is a weight of 1, 3 is
twice as powerful, 4 is 3 times as powerful, etc. Standard Voss noise with
eight generators would be \voss(”"11111111").

\vossdiff("weights”, "wildcards”) Generates a Voss noise sequence, but re-
turns the difference between pitches (the intervals), suitable for use as a
step stream in \pitch().

\replace("items”, "wildcards"”) Previously-filled items with a prior wild-
card (matching the wildcard list) are overwritten with new values.

\rest("switch”, "wildcards”, "restItem") For each wildcard match, pull
an item from the switch pool. If it is either - or ., replace the wildcard
with a rest; otherwise, leave the item alone. This is meant to deactivate
sounding events from an already-populated stream.

\restn(numEvents, numRests, "wildcards"”, "restItem”, reset) Alternates be-
tween preserving and suppressing notes—a nice way to introduce space
into a busy texture. In each cycle, first numEvents events pass through
unchanged; then numRests items are replaced with rests. This should be
done between inserting wildcards and filling in their values.

54

Note also that \seq(), \rand(), \wrand(), \xrand(), \shuf (), \first() and
\repeat1() may be used in (or as!) pool strings (Listing 40).

(

BP(\y).free;

PR(\abstractLiveCode).chuck (BP(\y), nil, (
event: (eventKey: \default),
defaultParm: \degree,
parmMap: (degree: (isPitch: true))

));

)

TempoClock.tempo = 140/60;
/y = "Nins("x", 8, 0.5)::\seq("123")";
/y+

// can repeat (like Prand)
/y = "Nins("x", 8, 0.5)::\rand("\seq("123")\seq("7854")\seq("
26,")")";

// no repeats (like Pxrand)
/y = "\ins("*", 8, 0.5)::\xrand("\seq("123")\seq("7854")\seq ("
26,")")";

// 2-5random notes after 6,

// note here that articulation/transposition applies to sub-
choices

/y = "\ins("*", 8, 0.5)::\xrand("\seq("123")\seq("7854")\seq ("
26, \xrand*2..5("34567")::\xpose("1"'")::\artic(".")")")";

// also, articulations and transposition can be streamed this
way

/y = "\ins("*", 8, 0.5)::\seq("123")::\artic(\seq("\seq*3("_")
\seqx7(".")"))";

/y-
Listing 40: Complex sequencing with sub-generators.

6.4.3 Modifier generators

Modifiers may be part of the main generator chain, or included in subsequences
(Listing 40).

\artic("articPool”, "wildcards") Replaces matching notes’ articulation with
one of the items randomly chosen from articPool. If no wildcards are given,
all notes match. Otherwise, only those notes with an association to one
of the given wildcards will match.

55

TempoClock.tempo = 140/60;
Mode (\cphr) => Mode(\default);
/make (pulselLeadVC:pl/melBP:pl);

// No wildcards, all notes match: All are staccato

/pl = "[15747::\artic(".")";
/pl+

// Wildcard, but none of the notes came from a
// wildcard operation, so none of them match.
/pl = "[1574]::\artic(".", "%x")",;

// Notes were inserted by \seq operating on "x";
// all notes match.
/pl = "[xxxx]::\seq("1574")::\artic("."”, "*")";

// Two layers of notes with different articulations
/pl = "[x*x*xx]::\seq(”"1574")::\ins("@", 4..8, ©0.25)::\shuf(”
1'27374'5'6'", "@")::\artic(">.", "%*")::\artic("~", "@"

)n,
’

/pl-
Listing 41: Usage of \artic() generator.

\articSplit("wildcards”, durl, "articl1”, dur2, "artic2"...

"defaultArtic”)

Notes of different durations will be given an articulation from the match-
ing articulation pool (instead of one global articulation pool). Durations
should be listed in ascending order. The note duration matches if it is
less than a written duration, so \articSplit("*", @.5, ".", "_") will
assign staccato to anything shorter than an eighth note, and normal ar-

ticulation to eighth notes or longer.

\xpose("intervalPool”, "wildcards") Transposition. For each wildcard-matching
note, choose an interval from intervalPool and transpose the note accord-

ingly.

TempoClock.tempo = 140/60;
Mode (\cphr) => Mode(\default);
/make (pulselLeadVC:pl/melBP:pl);

/pl = "\ins("%", 16, 0.25)::\seq(”12345432")";
/pl+

// Easy octave displacement.

/pl = "\ins("x", 16, ©.25)::\seq("12345432")::\xpose ("

1111,1I‘]IIH)IV;
/pl-

Listing 42: Usage of \xpose() generator.

56

6.4.4 Filter generators

\fork("timed generators"”) Applies different generators to different segments
of the bar. For instance, the source could insert n wildcards throughout
the bar, while timed generators could replace wildcards in the first half of
the bar with one value, and a different value in the second half. Here,
timed generators includes two items, and \fork() occupies the entire bar.
So both \seq() instances get half a bar. Source items in any portions
of the bar not covered by one of the timed generators will pass through

unchanged.

/y = "\ins("x", 10, 0.25)::\fork("\seq("13", "x")\seq("14",
ey

/y = "\ins("1,”, 10, 0.25)::\fork(” \seq("13", "1,")x\seq("
147 mp, Yy

Listing 43: Usage of \fork() generator.

\chain(generator, generator...) For internal use only.

\delete("wildcards"”, probability, negate) Find existing items produced
by a given wildcard, and keep those items based on probability. 0.75
probability means a 3/4 chance of keeping the item; I felt that a higher
probability should result in a more dense texture. If the coin toss deter-
mines that the note should not be kept, it is removed and its timepoint
will be empty. A nonzero negate value inverts the probability.

\wildcards("wildcards”) If an item had been produced by wildcard replace-
ment, “undo” this: replace the real value with the original wildcard, so
that a future wildcard replacement will affect this item. This is especially
useful when using \unis() to copy data from another process: you can
overwrite the other process’s data, but keep the wildcards, and then sub-
stitute new information in its place.

6.5 Pool strings, pool streams

January 2023 new feature!

Many generators include an argument for a “pool” of potential values. A
pool is written as a pattern string, from which values are chosen randomly (like
Prand). Section 6.4.1 in general identifies pool arguments as "new items”, and
Section 6.4.2 as "items".

Since 2020, a subset of wildcard-replacement generators (\seq(), \ser(),
\rand(), \wrand(), \xrand(), \shuf (), \shufn(), \first()) can appear within
pool strings. These are treated as subpatterns in the SC pattern system:
\rand(”\seq("123")\seq("543")\seq("678")") will randomly choose among
the three phrases defined by the \seq() members. See Listing 40.

57

Except \wrand(), these generators include a reset argument. If this is > 0,
the generator will reset to the beginning of its stream, at the barline; if <=
0, it will continue from its last position. (Note that \wrand() doesn’t need to
reset, because the random selections depend only on the weights, not on the
previous selection.)

The reset argument applies only when the generator is used as part of a
chain, fulfilling its original wildcard-replacement purpose. A generator inside
a pool string does not reset based on the reset argument.

e \ins("*", 16, 0.25)::\seq("12345", , 1) does reset on the bar line.

* \ins(\seq("”12345", , 1), 16, 0.25) does not reset.

This is because of SuperCollider’s stream implementation. Patterns are em-
bedded into a stream, and a stream can reset only to the beginning of the entire
stream. There is no concept of resetting to a specific pattern that is being em-
bedded into the stream. “Reset,” then, belongs properly to the generator that
owns the pool stream, and is marked with a ! following the generator name.

* In \ins!(\seq("12345"), 16, 0.25), the ! tells \ins() that its pool
should reset on the bar line.

\pdelta() and \pitch() are tricky cases because they have two pool strings.
In these cases, and only these cases, you may attach a ! reset flag to a generator
inside the pool string itself. If a ! is present in one or both pool strings, it
overrides the \pdelta() or \pitch() generator’s upper-level reset flag. This
allows one or the other to reset. Normally you will want both to reset; in that
case, as normal, add the reset flag to the parent generator.

| | | Parent with ! | Parent without !

pool 1 with ! pool 2 with ! Both reset Both reset

pool 1 with ! pool 2 without ! | Only 1 resets | Only 1 resets
pool 1 without ! | pool 2 with ! Only 2 resets | Only 2 resets
pool 1 without ! | pool 2 without ! | Both reset Neither resets

TempoClock.default.tempo = 2;
/make (pulseLeadVC:pl/melBP:pl);

// no reset: hear groups of 5 shifting off the barline
/pl = "\ins("*", 16, 0.25)::\seq("1>~2~3~4~5")";

// reset: extra C at end of bar

/pl = "\ins("*", 16, 0.25)::\seq("1>~2~3~4~5", | 1)";

// pool string generator without reset
/pl = "\ins(\seq("1>~2~3~4~5"_ | 1), 16, 0.25)";

58

// pool string generator with reset -- note usage on \ins!
/pl = "\ins!(\seq("1>~2~3~4~5"), 16, 0.25)";

// why can you not attach ! to the inner generator?

// here: should it always reset, or depending on which pattern
is active?

// so we just disallow it. \ins() can reset its pool.

/pl = "\ins("\seq!("1>~2~3~4~5")\seq("9>~8~7~6~")", 16, 0.25)";

/pl = "\ins!(”"\seq("1>~2~3~4~5")\seq("9>~8~7~6~")", 16, 0.25)";

// double-pool generator

// intervals and artic don't reset (barline accent)

// note that \first() requires ! at the top-level generator

/pl = "\ins!(\first("@", "x"), 16, 0.25)::\seq("1>~", "@")::
\pitch("*x", \first("5'", "7,"), 0, @, \first(">~", "~"))";

// normal reset: both intervals and artic reset (easy way,
specify \pitch!)

/pl = "\ins!(\first("@", "x"), 16, 0.25)::\seq("1>~", "@")::
\pitch!("*", \first("5'", "7,"), 0, 0, \first(">~", "~"))";

// intervals reset, artic doesn't (slur up after first bar)
/pl = "\ins!(\first("@", "x"), 16, 0.25)::\seq("1>~", "@")::
\pitCh("*”, \first!(”S'”, ”7,”), @’ 0’ \first(”>~”, II~II))IY;

// artic resets, intervals don’'t (second bar starts at C and
goes down)

/pl = "\ins!(\first("@", "x"), 16, ©0.25)::\seq("1>~", "@")::
\pitch("*", \first("5'", "7,"), 0, @, \first!(">~", "~"))";

Listing 44: Behavior of pool-string reset flags.

6.6 Writing new generators

Generators inherit from PR(\c1Gen).!® They should implement:

~prep Validate the entries in the ~args array, and return the Proto object by
finishing with currentEnvironment. In general, start with ~baseItems
~args[0].

~process Generally begins with ~items = ~getUpstreamItems. () ;. Following
this, manipulate the ~items array and return it at the end. Be careful
to copy or collect the array (to avoid corrupting ~baseItems) and—
important!—if you modify any of the items, be sure to copy it first.

15In Proto, inheritance is handled by “cloning” the Proto: PR(\clGen).clone { ...
overrides... }.

59

Generators should take care to respect their time span, given by ~time (the
generator’s onset within the bar) and ~dur (the number of beats occupied by
this generator). Do not modify any items outside this time span. See the defi-
nition of PR(\clGenRot) for an example.

~baseItems and ~items are arrays of Events, containing:

item The entry to be played. For non-pitched parameters, these will gener-
ally be characters. Otherwise, pitch strings are parsed into SequenceNote
objects.

time The event’s onset time within the bar. This is relative to the bar line, not
the generator’s onset time.

dur The number of beats until the next event. This may not be reliable dur-
ing processing. The top-level generator will correct the dur values before
streaming out the events.

This documentation may be expanded at a later date.

7 Graphical interface windows

7.1 Code window features

The GUI code window has two advantages for cll over the SuperCollider IDE:

+ The IDE’s syntax highlighter doesn’t understand cll. You may get incorrect
highlighting or indentation with cll statements.

+ The default font size is larger, for projection in performance.

One limitation: Because of a SuperCollider bug,'® this window can evaluate
single lines only. If you select a block of code to evaluate at once, the selection
is ignored and only the line containing the cursor will be executed.

The “autosave” button at the top will save the contents to disk automatically
when the window is closed. The file location is Platform.userAppSupportDir
+/+ "cll-sketches” and files are automatically named by date and time. (I
preferred autosave over a standard save dialog specifically because it’s a GUI
window rather than a code document.) The “load” button allows you to choose
a file from cll-sketches.

If the cursor is on a 5.2, pressing alt-shift enters an intelligent navigation
mode, where arrow keys move through syntactic elements rather than charac-
ters:

* Left and right arrows move to the previous or next sibling.

» The up arrow expands the selection to the syntactic unit containing the
current element.

16https://github.com/supercollider/supercollider/issues/3279

60

https://github.com/supercollider/supercollider/issues/3279

- The down arrow contracts the selection to one of the units contained
within the current element.

Press alt-shift again when the selection is what you want, to exit navigation
mode and retain the selection.

It takes a little time to learn to use this fluently, but it’s very effective,
especially for selecting entire generators at once. (Note also that, at present,
the set pattern statement must be complete and free of syntax errors.)

7.2 Controller window features

The controller window divides into two or three parts: controls, a list of pro-
cesses and instruments, and an optional cheatsheet.

7.2.1 Controls

The default layout is based on a Korg Nanoktl. (If a Nanoktl is plugged in and
configured with the default controller numbers, the hardware knobs and sliders
are connected automatically.) You may also call /c11Gui. (\mix16Touch) for a
layout based on TouchOSC’s Mix16 preset.

Buttons behave as toggles. Sliders and knobs should be self-explanatory.

Note the slight shading at the top of each control. This is to overlay a text
label. Unfortunately, I cannot find a way to add a label and make the widget
respond over its entire area. So, be careful to click in the unshaded area at the
bottom.

7.2.2 Process list

The process list collects all playable BPs (“bound processes”) and VCs (“voicers”).
Any item in the list can be controlled-dragged into buttons:

+ BPs: the toggle button is for play/stop and the associated fader/knob is
for mixing.

* VCs: the toggle button is for mute and the fader is for mixing.

If a BP defines global controls, it will have a + to the left of its name. Right-
arrow expands to show the controls that belong to it; left-arrow hides them.
Individual controls can be dragged into a button, where they will be attached
to the associated fader.

You can use the keyboard to “throw” a list entry up into the GUI Both
\nanoTouch and \mix16Touch have 16 button/fader pairs, identified as 0-9 and
A-F. To “throw,” type * and the index character (e.g. *0 for the first one).

Backspace in the list will delete an entry if possible. A BP can be deleted
only if it is not playing; a VC, only if it is not attached to an existing BP player.

61

7.2.3 Cheatsheet

You can write notes to yourself about available instruments and players and
save them under Platform.userAppSupportDir +/+ "cll-cheatsheet.txt"”. If
this file exists, its contents will be displayed at the bottom of the controller
window. (You can edit the text here and save as well.) This is free text, only
for your convenience.

8 Presets

Presets are a way to maintain multiple variants of the same process or instru-
ment.

8.1 ’set’-ting extra parameters in a cll process

Presets are concerned with synthesis parameters that are not defined as se-
quencing parameters in parmMap. Some parameters are impractical to encode
into parmMap (or also, it can be impractical to encode every possible parameter
into parmMap).

Parameters external to parmMap can be changed by calling . set on the BP ob-
ject. The specific behavior varies, depending on the type of process. In all cases,
defaults and postDefaults are used; see the section on PR(\abstractLiveCode)
for details.

If the process was made by cloning PR(\abstractLiveCode), then extra pa-
rameters are placed into postDefaults (unless they are simple constants, in
which case they might be placed into defaults).

Pitched note-playing processes (such as Fact (\melBP), Fact(\chordBP) and
Fact(\arpegBP) in the ddwLivecodelnstruments quark) place a special object
into the process’s defaults slot, to integrate parameters from multiple sources.
set parameters become “overrides.”

In general, the implementation details are less important than the fact that
you can insert new keys and values into the process’s events by using set.

\loadCl.eval;
s.boot;

TempoClock.tempo = 124/60;

// prepare a SynthDef and a process to play it
(
SynthDef (\snare, { |out, freq = 1200, drop = 0.6, rq = 0.3,
time = 0.15, amp = 0.1]
var sig = PinkNoise.ar;
var pitchEg = EnvGen.ar(Env([1, dropl, [timel, \exp),
levelScale: freq);
var ampEg = EnvGen.ar(Env([0, 1, 0.7, 0], [0.01, 0.4, 0.5,
0.091, -4),

62

timeScale: time, doneAction: 2);
sig = BPF.ar(sig, pitchEg.clip(20, 20000), rq) / rq;
Out.ar(out, (sig * amp * ampEg).dup);
}) .add;

PR(\abstractLiveCode).clone {

~event = (eventKey: \default);

~initLevel = 0.7;

~userprep = {
~chan = MixerChannel(~collIndex, s, 2, 2, ~initlLevel);
~defaults.put(\out, ~chan.inbus).put(\group, -~chan.

synthgroup);

¥

~userfree = {
~chan.free;

¥

~defaultParm = \amp;

~parmMap = (amp: ($-: 0.7, $.: 0.3));

~defaults = (instrument: \snare)
} => PR(\ksnr);
)
// play it

PR(\ksnr) => BP(\ksnr);

/ksnr = " - =",
/ksnr+;

/ksnr (set(\freq, 1200, \time, ©.11)); // one sound
/ksnr(set(\freq, 3200, \time, ©.35)); // other sound

/ksnr-;

Listing 45: Changing the length of a drum by set().

Note: Because set() parameters are embedded into the process’s pattern,
the parameter can itself be a pattern. For instance, you could random-
ize a filter frequency by /process(set(\ffreq, Pexprand(1000, 5000,
inf)));.

8.2 Presets and (post)defaults

Presets are a way to store, and automatically apply, set-style extra parameters.

For abstractLiveCode clone processes, it is relatively simple. Presets belong
to the process, stored in the presets variable. If you begin with Listing 45, you
can define local presets as follows.

63

/ksnr(presets = (
short: (freq: 1200, time: 0.11),
long: (freq 3200, time: 0.35)
));

// Use a preset
/ksnr(preset(\long));

Listing 46: Defining and applying local presets.

Note-playing processes, which go through a VC (voicer) instrument, define
presets with the VC instrument rather than the process. That will be explained
shortly.

8.3 Global, persistent presets

Presets are especially relevant at the moment of creating a process, from a
Factory object. For this reason, you can add presets to Factories, save them to
disk, and reload them at any time. Then they are globally available.

// First we need a factory for the ksnr process.

(

make: { |name|

PR(\ksnr) => BP(name);
3,
type: \bp) => Fact(\ksnr);

// Then define presets for the factory
Fact (\ksnr).addPreset(\short, (time: ©.11, freq: 1200))
.addPreset(\long, (time: ©.35, freq: 3200));

Fact.savePresets;

// later, when loading the system, you can do:
Fact.loadPresets;

// Use a preset
/make (ksnr:sn(preset:\short));

Listing 47: Defining and applying global presets.

Note: For saving, values or patterns within presets need to be possible to
archive (Object methods writeArchive, readArchive). In particular, avoid
open functions (those which refer to variables outside the function’s own
scope).

64

8.4 Presets for note players

The examples so far have concerned a process that is tailored to a specific
SynthDef. Note-playing processes are different in that the process encapsulates
generic pitch-handling logic, leaving the sound definition to a voicer (VC) in-
strument.

Presets define sonic parameters. Therefore, presets for new players should
be defined with the instrument, not with the process.

The procedure, however, is much the same as in the last section: addPreset
populates the data, exactly as shown earlier, but applied to a voicer factory
instead of a process factory. Then the presets will follow the instrument into
whichever note-playing process you use with it. (Preset parameters go into the
process, so you can use the same voicer factory with different processes, and
each process can use a different preset.)

// Add presets to one of the livecodeInstruments voicers
Fact(\staccVC).addPreset (\short, (ffreq: 90, fAtk: 0.01, fDcy:

0.1))
.addPreset (\brassy, (ffreq: 453, fAtk: ©.22, fDcy: 0.97));

// Create a note-player with one of these presets
/make (staccVC:st(preset:\short)/melBP:st);

/st = "\ins("*", 8, ©0.5)::\seq("13569")";
/st+;

/st(preset(\brassy)); // apply a different preset

/st-;
Listing 48: Defining and applying global presets.

8.5 makeParms

Some preset parameters may need to be applied at the time of Factory-building.
For instance, a sample-player instrument (Listing 49) loads audio files while
initializing. A preset should be able to specify which file(s), but normal preset
parameters are applied after initializing. This is too late for this case.

The makeParms key within the preset dictionary contains items that will be
inserted into the make statement’s initialization parameters.

\loadAllCl.eval;

(
SynthDef (\bufPan, { |gate = 1, start, bufnum, pan, freq = 4409,
amp = 1,
attack = 0.001, decay = 0.02, out, baseFreq = 440]|
var sig;

65

sig = PlayBuf.ar(1, bufnum, freq / baseFreq * BufRateScale.
kr(bufnum), 1, start, 0)
* EnvGen.kr (Env.asr(attack, 1, decay), gate, doneAction
12);
Out.ar(out, Pan2.ar(sig, pan, amp));
}) .add;

// sample-player Voicer
(
keys: #[master, rvbmc],
initLevel: -12.dbamp,
// user should specify path at creation time
baseFreq: 60.midicps,
make: { |name|
~target = MixerChannel(name, s, 2, 2, ~initlLevel);
~buf = Buffer.read(s, ~path);
Voicer (1@, \bufPan, [bufnum: ~buf.bufnum, baseFreq:
~baseFreql], target: ~target);
3,
free: { ~target.free; ~buf.free },
type: \vc) => Fact(\sampleVC);

Fact(\sampleVC).addPreset (\houston, (
makeParms: (
path: Platform.resourceDir +/+ "sounds/allwlk@1l.wav",
baseFreq: 71.midicps

))
start: 87205, amp: 0.5

));
)

/make (sampleVC:hou(preset:\houston)/melBP:hou);
/hou = "\ins("*", 8, ©0.5)::\seq("12345678")";

/hou+
/hou-

Listing 49: Using makeParms to set initialization parameters.

For curious readers: the make statement in Listing 49 translates into the
following four SuperCollider statements, to show how makeParms are applied.
(The file path is for Linux and will be different in Mac or Windows.)

Fact('sampleVC').chuck(VC('hou'), nil, (path: "/usr/local/share
/SuperCollider/sounds/allwlk01.wav"”, baseFreq:
493.88330125612));

Fact('melBP').chuck(BP('hou'));

VC('hou') => BP('hou');

BP('hou').preset('houston’)

Listing 50: makeParms translation into SuperCollider code.

66

9 Extending cll

cll is designed to be extensible: adding new statements is relatively straightfor-
ward.
Processing a cll statement goes through two main steps:

1. PR(\chucklibLiveCode) tests the statement against a number of regular
expressions, to determine what type of statement it is.

2. Then, a PR object to handle the statement is instantiated, and the state-
ment is passed to that object’s process method.

So, to implement a new statement type, you need to do two things, matching
the above stages.

9.1 Statement regular expression

First, add a statement ID and regular expression into PR(\chucklibLiveCode).
Within this object, ~statements is an array of Associations: \statementID ->
"regexp"”.

~statements = [
\clMake -> "* xmake\\ (.*\\)",
\clFuncCall -> "* x*id\\ . \\(.*\\)",
\clPassThru -> "* x([A-Z1[A-Za-z0-9_1*x\\.)?2"id\\ (.*\\)",
\clChuck -> "* *x([A-Z1[A-Za-z0-9_]x\\.)?"id *=>.x",
\clPatternSet -> "* x"id(\\.|"id|"id*[0-9]+)x = %"
\clGenerator -> "* x"id(\\.]|"id)* \\%x.x",
// harder match should come first
\clXferPattern -> "* x"id(\\."id)?(*"int)? ->>",
\clCopyPattern -> "~ *x*id(\\."id)?(\\x"int)? ->",
\clStartStop -> "*([/'spcl*x'id)+[" spclx[+-1",
\clPatternToDoc =-> "* x'id(\\.|"id)*["*spcI*$"”

’

1

Listing 51: Cll statement regular expression templates.

More restrictive matches should come first. For instance, \clXferPattern
comes before \clCopyPattern. If they were reversed, -> in the “copy” regular
expression would match the “xfer” statement as well as the “copy” statement.
Checking ->> first ensures that the more permissive test takes place only after
the stricter test fails.

Within these strings, a backtick (*) introduces a macro that will be expanded
into part of a regular expression. Available macros are:

~tokens = (
al: "A-Za-z",
dig: "0-9",

id: "[A-Za-z][A-Za-z0-9_1*",
int: "(-[0-91+|[0-9]1+)",

67

// http://www.regular-expressions.info/floatingpoint.html
float: "[\\-+12[0-91*\\.?2[0-9]1+([eEI[\\-+]?2[0-9]+)?",
spc: " " // space, tab, return

)5
Listing 52: Regular expression macros for SC language tokens.

You should match only as much of the syntax as you need to determine the
statement type. This is not the place for syntax validation. For example, the
\clGenerator statement has a fairly complex syntax, but the matching regular
expression is looking only for one or more IDs separated by dots, followed
by a space and then an asterisk. This will dispatch to PR(\clGenerator); it
is this object’s responsibility to report syntax errors (generally by throwing
descriptive Error objects).

Note: The leading slash is stripped from the statement before regular ex-
pression matching. Don’t include the slash in your regular expression.

9.2 Handler object

Usually, a statement handler is a PR object, containing a Proto object prototype.
The PR’s name must match the statement ID created in the last step.

The Proto must implement process, which takes code (the statement, as a
String) as its argument. It should return a string containing the SuperCollider
language syntax to perform the right action.

Proto {
~process = { |code]|
// parse 'code' and build the SC language statement(s)...
translatedStatement // return value
}
} => PR(\clMyNewStatement);
Listing 53: Template for cll statement handlers.

Very simple statements may be implemented as functions added into
PR(\chuckliblLiveCode).

PR(\chucklibLiveCode).clMyNewStatement = { |code|
// parse 'code' and build the SC language statement(s)...
translatedStatement // return value

};
Listing 54: Adding a function into PR(\chucklibLiveCode) for simple statement types.

68

10 Code examples

CONOUTh~WDNHF

21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

Launching chucklib-livecode.
A quick techno-ishdrumset.
Generators fordrums.o L.
Adding sound effects to a simple beat.
Bassline template.,
Chord-playing template.
Example of arpeggiator usage.
Phrase selection for drum fills.
Multi-bar bassline.
Defining a simple cll process as a factory.
Using the cll process factory in a performance.
Template for the parametermap.
How to write arrays in the parameter map.
Arrays for multiple-parameter setting using one cll parameter.
Cll statements, one by oneorasabatch.
Syntax template for the Set pattern statement.
Multiple parameters with different timing.
A retro acid-house bassline, demonstrating pitch notation.
Syntax template for “Set pattern” phrase selection.
Pitch notation in PR(\abstractLiveCode); not generally recom-
mended.
Nested phrase-selection groups.
Syntax template for make statements.
Example of the make statement.
Syntax template for passthrough statements.
Syntax template for Chuck statements.
Syntax template for func-call statements.
Syntax template for copy/transfer statements.
Demonstration of “Show pattern” statements.
Common initialization sequence, using helper functions.
Isorhythmic cycles with generators.
Interaction between generator syntax and “set pattern” rhythmic
NOtation. i e e e e
Usage of \rot() generator. ouuuuo...
Usage of \rDelta() generator.
Usage of \ramp() generator.
Using the unis() generator to coordinate two harmony processes.
Usage of \ser() generator.o....
Usage of \pdefn() generator.
Usage of \gdefn() generator.
Usage of \pitch() and \pitch2() generators.

69

49
50

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Complex sequencing with sub-generators.
Usage of \artic() generator.
Usage of \xpose() generator.ouo.o....
Usage of \fork() generator.
Behavior of pool-string reset flags.
Changing the length of a drum by set().
Defining and applying local presets.
Defining and applying global presets.
Defining and applying global presets.
Using makeParms to set initialization parameters.
makeParms translation into SuperCollider code.
Cll statement regular expression templates.
Regular expression macros for SC language tokens.
Template for cll statement handlers.
Adding a function into PR(\chucklibLiveCode) for simple state-

MENEEYPES. « ¢ v v v v e

11 Typesetting

Typeset by TeX Live 2017; Edited in Emacs 24.3.1 (Org mode 8.3beta).

70

68

	Introduction
	Overview
	Acknowledgments

	Installation
	Installation with git
	Installation without git
	Running cll in a session

	Tutorial
	Starting a session
	Drums
	Pattern strings
	Generators
	Sound effects
	Pitched notes
	Phrases
	Errors

	Process prototype
	Data structure
	PR(\abstractLiveCode)
	Parameter map
	Event processing
	Phrase sequence

	Livecoding statement reference
	Statement types
	Set pattern statement
	Start/stop statement
	Make statement
	Passthrough statement
	Chuck statement
	Func call statement
	Copy or transfer statement
	Show pattern statement
	Helper functions
	(Deprecated) Randomizer statement

	Generators
	Generator design
	Generator usage
	Wildcard matching
	Built-in generators
	Pool strings, pool streams
	Writing new generators

	Graphical interface windows
	Code window features
	Controller window features

	Presets
	'set'-ting extra parameters in a cll process
	Presets and (post)defaults
	Global, persistent presets
	Presets for note players
	makeParms

	Extending cll
	Statement regular expression
	Handler object

	Code examples
	Typesetting

