
Chucklib-livecode: A live-coding dialect for
SuperCollider
H. James Harkins
February 10, 2017

Contents
1 Introduction 1
2 Usage example 2
3 Pattern string language 6
4 Generators 7
5 Additional features 10
6 Conclusions 11

1 Introduction
Does the world need another live-coding language for music? Perhaps the
world didn’t, but I did.1

I grew interested in live-coding after many years of work in the Super-
Collider audio programming language.2 I depend particularly on a workflow
of my design, chucklib,3 to manage resources and signal routing for musical
processes. (It was inspired by the eponymous operator of the ChucK program-
ming language, =>, though it does not try to replicate ChucK’s most significant
innovations.4) Chucklib facilitates complex behaviors by delegating some of the

1DRAFT version, not to be cited or reproduced. For now, I am reserving copyright. Very likely
the final version will be Creative Commons.

2McCartney, James. “Rethinking the ComputerMusic Language: SuperCollider.” Computer Music
Journal, Winter 2002, Vol. 26, No. 4, Pages: 61-68.

3Harkins, H. James. “Composition for Live Performance with dewdrop_lib and chucklib.” The
SuperCollider Book. Eds. Scott Wilson, David Cottle and Nick Collins. Cambridge, MA: MIT Press,
2011.

4Wang, G.; Cook, P. (2003). “ChucK: A concurrent, on-the-fly audio programming language”
(PDF). Proceedings of the International Computer Music Conference.

1

details to self-contained “process” objects, which wrap SuperCollider patterns
with other resources, freeing the user from managing resources directly: the
user simply instantiates a chucklib process and it takes care of the practical
necessities automatically. Once properly tested, chucklib processes reduce the
chance of onstage failures and save considerable time while designing pro-
cesses.

Adapting chucklib to an existing live-coding language, such as TidalCycles,5
may have been possible, but it would also have changed the nature of a process
object from an active agent to a passive recipient of messages. At the same
time, I was intrigued by the metrical representation of musical material in
Thor Magnusson’s ixi lang,6 and felt that its principle would be a viable way
to compose material interactively. So, I arrived at a compact notation roughly
inspired by ixi lang, and a chucklib process template that performs the notated
material. The entire system is named chucklib-livecode, or cll for short.

It is beyond the scope of this paper to cover all aspects of cll. I will focus here
on the crucial user-facing elements: the chucklib process to play musical ma-
terials, the pattern string language to write musical materials, and generators
for algorithmic composition. Interested readers may consult cll’s PDF manual
for details on components not discussed in this article.7

2 Usage example
Chucklib’s guiding philosophy is to separate the definitions of musical behav-
iors from their usage in performance. When the definitions exist in separate
files, processes and note-playing instruments may be arbitrarily complex, with-
out cluttering the performance interface with background details. Code used
in performance should be compact and simple. Listings 1 and 2 follow this
principle.

chucklib process definitions organize into three main object types: “process
prototypes” (PR), which define behavior; “bound processes” (BP), the play-
ers, which “bind” the prototype to specific data for performance; and “fac-
tories” (Fact), which automate the construction of BPs from PRs. One PR can
spawn many BP players from the same definition, allowing cll to implement
the common data processing for the user’s pattern strings in a master proto-
type, PR(\abstractLiveCode). All cll processes are BP instances of this proto-
type, customized for each musical behavior by passing a Dictionary into the
chuck operation.8

5McLean, A. (2014). “Making programming languages to dance to: Live coding with Tidal.” In
Proceedings of the 2nd ACM SIGPLAN International Workshop on Functional Art, Music, Modelling and
Design.

6Magnusson, Thor. “ixi lang: A SuperCollider Parasite for Live Coding.” http://www.
ixi-software.net/thor/ixilang.pdf, accessed December 10, 2016.

7Harkins, H. James. Chucklib-Livecode Manual. https://github.com/jamshark70/
ddwChucklib-livecode/raw/master/cl-manual.pdf. Accessed February 4, 2017.

8The examples in this paper use a shorter syntax for Dictionaries: (name: value, ...). Tech-
nically, this produces an Event, which is a subtype of Dictionary. In the context of collections of

2

http://www.ixi-software.net/thor/ixilang.pdf
http://www.ixi-software.net/thor/ixilang.pdf
https://github.com/jamshark70/ddwChucklib-livecode/raw/master/cl-manual.pdf
https://github.com/jamshark70/ddwChucklib-livecode/raw/master/cl-manual.pdf

s.boot;
TempoClock.tempo = 2;

(
SynthDef(\buf1 , { |out , bufnum , start , pan , amp = 0.1, time = 1|

var sig = PlayBuf.ar(1, bufnum , startPos: start),
startTime = start / BufSampleRate.ir(bufnum),
eg = EnvGen.kr(

Env.linen (0.02,
min(time , BufDur.ir(bufnum) - startTime - 0.04), 0.02),

doneAction: 2
);
Out.ar(out , Pan2.ar(sig , pan , amp * eg));

}).add;
);

(
(make: { |name|

BP(name).free;
PR(\abstractLiveCode).chuck(BP(name), nil , (

// BEGIN customizing the live -coding process prototype
userprep: {

~buf = Buffer.read(
s, Platform.resourceDir +/+ "sounds/a11wlk01.wav"

);
~defaults[\bufnum] = ~buf;

},
userfree: {

~buf.free;
},
defaultParm: \clip ,
parmMap: (

clip: (
$^: [86271 , 24604] , // start , numframes
$-: [140463 , 15105] ,
$.: [124891 , 11990] ,
$_: [158215 , 13237] ,
alias: [\start , \frames]

),
pan: (

$<: -0.9, $>: 0.9,
$(: -0.4, $): 0.4,
$-: 0

)
),
defaults: (instrument: \buf1 , amp: 0.1),
postDefaults: Plazy {

Pbind(\time , Pkey(\frames) / ~buf.sampleRate)
}
// END customizing

));
}, type: \bp) => Fact(\cl);
);

Listing 1: Factory definition of a playable live-coding process.

3

// Load the cll framework , and the process definition
\loadCl.eval;
(thisProcess.nowExecutingPath +/+ "demo -init.scd").load;

// Create the player , provide initial material , and play
/make(cl);
/cl = "....";
/cl+;

/cl = ".|. -|.|.";

/cl = ".|.-|.- |.";

/cl = ".|.-|.- |._";

/cl = "\ins(".|.-|.- |._", "^", 2, 0.25)";

/cl = "\fork(".|.-|.- |._", "|\ins(, "^", 2, 0.25)||")";

/cl = "\fork(".|.-|.- |._", "|\ins(, "^", 2, 0.25):: \shift(, ".", 1, 0.25)||")";

/cl = "\fork(".|.-|.- |._", "\ins(, ".", 1, 0.25)|\ins(, "^", 2, 0.25):: \shift(,
".", 1, 0.25)||")";

/cl..pan = "<><><><>";

/cl -;

/cl(free);

Listing 2: Development of a bar of rhythm in performance.

Figure 1: A few sample results from the longest generator string above.

1. ". . |.^-.| -^ |. _ "

2. ". . |. -.| - |.^_^"

3. ".. |. -^|.- |. _^"

4. ". .|. -^|.- |.^_ "

4

Listing 1 is a short chucklib object definition file, containing a SynthDef
defining the signal processing for a single note, and a chucklib “factory” (Fact)
that manufactures a cll “process” to be played later. In the example process,
each event chooses one of four “clips” drawn from the canonical SuperCollider
example audio file. The process definition illustrates some key cll features:

• Parameter declaration: Performers provide new musical material to cll
by issuing “set pattern” statements toward synthesis parameters defined
in each process’s “parameter map.” In the example, parmMap associates
the parameter names clip and pan to a number of single-character iden-
tifiers, representing the data values that will be sent to synthesis nodes.
A normal parameter definition is a simple list of characters and values
(pan). Parameters can also bundle several values together, as in clip: the
alias means that the two array items will translate into entries for start
and frames, respectively, in the resulting events.

• Default parameter: The primary, or “default,” parameter receives new
pattern strings when no other parameter name is given. It also controls
the rhythm that the process will play. Its name is assigned to defaultParm.

• Defaults and event data flow: For complex sound designs, it is imprac-
tical to write pattern strings for all parameters onstage. In a cll process,
defaults holds initial values for any relevant synthesis parameters. Val-
ues from the user’s interactively-written pattern strings override these
defaults. Subsequently, postDefaults can add new, non-interactive data,
and massage the pattern-string data into the form needed by the Synth-
Def. The example’s postDefaults demonstrates the latter scenario: the
clip parameter provides the clip duration as a number of sample frames,
but the SynthDef expects a playing time in seconds. postDefaults reads
the number of frames (Pkey(\frames)) and converts to seconds by divid-
ing by the buffer’s sample rate.9

• Automated resource management: A pair of functions, userprep and
userfree, prepare and release resources that the process needs. The ex-
ample plays audio from a recorded sound file, so the process needs to load
the audio into a Buffer.10 Then, when the process is no longer needed,
it is responsible for releasing the Buffer memory as well. Because the
process uses these hooks, performance code can simply “make” the cl
player, with no need to manage the buffer directly.

named data values, Events and Dictionaries are functionally interchangeable.
9This specific case can be handled without postDefaults, by writing the clip duration into the

parameter map in seconds, or by writing the SynthDef to accept the number of sample frames
to play back. Other cases do require post-processing within the process. Also note Plazy, which
ensures that the correct environment-variable scope is in force to access ~buf.

10The buffer reference should be a constant value in all events, making it suitable for defaults.
But the buffer is not ready while the factory is processing. So, userprep waits until the buffer
number is available, and only then puts it into defaults.

5

Listing 2 demonstrates a short performance. First, the user must load the
cll framework and the process definition(s). Then, she can make a playing in-
stance of the process, create a simple musical phrase to start with (in this case,
four quarter notes), and play the process on the next barline. Musical develop-
ment proceeds by editing the pattern string to insert notes. (Observe the use of
vertical-pipe “|” dividers to keep the beats clear.) Generator expressions ran-
domize the content. The final variation hints at the kind of interaction among
generators that is possible. It represents the algorithm:

1. Start with ".|.-|.- |._".
2. \fork divides the bar into two regions for further processing:

(a) Insert one dot into any empty 16th note slot in the first beat (\ins).
(b) In the remaining three beats, insert two “^” into empty 16th-note

slots, and shift one dot to be a 16th-note earlier or later.
Some possible results of this algorithm are shown in Figure 1. Note the

elements that are common to all the variations (e.g. the positions of the - and
_ characters) and the elements that vary.

3 Pattern string language
The centerpiece of cll is the compact “pattern string” syntax to write “phrases”
consisting of musical items and rhythms. (cll processes can store as many
phrases as the user desires, and stream them out in an order of the user’s choos-
ing. Otherwise, cll would be limited to single-bar loops.) Like its predecessor,
ixi lang, it divides durations of time among horizontally-spaced ASCII charac-
ters. Spaces are placeholders, positioning visible characters (musical events) at
the desired time points. In ixi lang, all characters represent the same rhythmic
value. cll subdivides the phrase duration into equal “beats” using vertical pipes,
“|”; each “beat” is further subdivided equally by the characters and placehold-
ers within it, for a more efficient representation of sparser beats. (Empty beats
may even appear as a pair of consecutive vertical pipes.) As in ixi lang, phrases
are assumed to be one measure long by default; the user may override this
duration.

For comparison, Figure 2 shows a typical house-music drum pattern in
Western notation, translated to ixi lang and cll. The ixi lang version resembles
a musical score in that moments in time are vertically aligned. cll sacrifices
this visual element in exchange for less redundancy and clear division of a bar
into beats. For example, in the /kik pattern, beat 3 divides into four characters
representing 16th-notes; the two characters in beat 4 are eighth-notes.11 This
reflects a philosophical difference: ixi lang is a display interface as much as a

11Note also that this strategy natively supports triplets, quintuplets and so on. Units of time are
divided equally; nothing in cll enforces duple divisions.

6

Figure 2: A common house-music beat, with equivalents in ixi lang and cll.
 ��

� �� ��

�� ��

�

�� ��

�

�� �� ��

�

��� 44

�
�� 44

� �� �� 	

�
�

�

��

�

/* ixi lang:
hh -> |..- ..-. .- ..- |
snr -> | - - .|
kik -> |o o o _o _ |
*/

// cll
/hh = "..- |..-.| .- |..- ";
/snr = "|-||- .";
/kik = "o|o|o _|o_";

language, while cll statements are, first of all, instructions to produce musical
phrases.

The general principle of one character per item has two exceptions: pitched
parameters and generators. If a parameter is declared as (isPitch: true),
the list of characters and values is optional, and Arabic digits represent scale
degrees. Additional characters appended to the digit modify the note by octave
displacement, accidentals and articulation style. For instance, 5,-> means the
fifth scale degree, down one octave, lowered by a half step and accented.

Generators extend pattern strings beyond notated deterministic materials
into algorithmic manipulation of note data (Section 4). A generator expression
consists of a backslash-escaped name followed by arguments in parentheses:
for instance, \ins("", "*", 3, 0.5) inserts three * items at random eighth-
note time points within the time span that the generator covers. Generators
may be nested or chained, and can grow to be lengthy.

Internally, all items in a pattern string have two timing properties: time
for the onset after the phrase’s beginning, and dur for the length of the item’s
span. For normal single items, dur is usually irrelevant. Generators depend
on both properties to know the portion of the phrase’s time span over which
to act. For the purpose of dividing the phrase duration, or a pipe-delimited
subdivision, into onset time points, pitched note strings and entire generator
expressions—no matter how long—are considered to be indivisible “items.”
That is, the pattern string "1~ 4'~5~" contains eight characters but represents
four items: 1~, spacer, 4'~ and 5~. Thus the bar is divided into four units, and
the three notes (excluding the spacer) appear on beats 1, 3 and 4 respectively.

4 Generators
Generators are string-rewriting operators that manipulate the contents of pat-
tern strings algorithmically. Internally, cll translates a pattern string into an

7

// A. Insert 5 notes randomly in the bar , at 8th -note intervals.
/cl = "\ins("", ".", 5, 0.5)";

// B. Insert 3 quiet notes randomly , around 2 fixed -position louder notes.
/cl = "\ins("^|| -|", ".", 3, 0.5)";

// C. Insert 5 notes randomly , with a 3-note sequence.
// Nesting syntax:
/cl = "\seq(\ins("", "*", 5, 0.5), "^.-")";

// D. Chaining syntax:
/cl = "\ins("", "*", 5, 0.5)::\seq(, "^.-")";

// Evaluation of D:
" | | | " // initial state
" *|* |**| *" // after \ins
" ^|. |-^| ." // after \seq

Listing 3: Basic generator usage.

array of events or generator objects; the events contain an identifier for the
note data and an onset time. Every time a phrase begins, any generators within
it are resolved by inserting, deleting or modifying events in its source pattern
string, eventually leaving an array of events where all generators have been
processed and removed.

A key reason for generators to operate by string rewriting is that the source
string already places all of its items at a specific time points, favoring a strategy
that preserves these pre-existing time points as much as possible. The source
string may be empty (Listing 3, example A); if it provides initial items (example
B), they become structural time points for generators to ornament. The \ins
generator illustrated here identifies empty spaces within the source string, at
beat intervals given by the quantization parameter (0.5 here), and inserts the
given number of new items, drawing them randomly from a “pool” ("."). Other
generators can shift items earlier or later within the bar, rotate the rhythm
within the bar, or replace “wildcards” with other items by deterministic or
randomized sequencing strategies.

Individual generators should implement fairly simple rewriting behavior; as
an important early document outlining live-coding aesthetics prescribes, “In-
sight into algorithms” is preferable to the “obscurantism” of compact notation
that hides semantics.12 If a single generator does too much work by itself, its
algorithm is hidden from the audience’s sight. Recombining simple processors,
by “nesting” or “chaining” them, reveals the connections between them.

When one generator appears as the first input to another, then they are
“nested”: the first generator’s result becomes the second one’s source sequence.
Listing 3, example C, nests an “insert” generator (\ins) inside a “value se-
quence” generator (\seq). \ins evaluates first, adding 5 *wildcards into empty
8th-note spaces. This new event list is passed into \seq, which replaces the wild-

12The (Temporary|Transnational|Terrestrial|Transdimensional) Organisation for the (Pro-
motion|Proliferation|Permanence|Purity) of Live (Algorithm|Audio|Art|Artistic) Programming.
“ManifestoDraft.” https://toplap.org/wiki/ManifestoDraft. Accessed January 31, 2017.

8

https://toplap.org/wiki/ManifestoDraft

// A. Harmony changes during the bar (assuming a pitched parameter).
/hrm = "\ins("", "*", 12, 0.25) ::\fork(, "\rand(, "13")|| \rand(, "24")|")";

// B1. Forking to "protect" part of the bar from an inner generator.
/cl = "\fork("^", "|\ins(, ".", 4, 0.5)||")";

// B2. Written without fork , as this is trivially simple.
/cl = "^|\ins("", ".", 4, 0.5)||";

// C. Non -trivial example:
// Protect first beat , but chain a generator to the whole bar.
/cl = "\fork("*", "|\ins(, "*", 4, 0.5)||")::\seq(, "^.-")";

Listing 4: The \fork generator.

cards, one by one, by the given three items in order.13 Any rhythm generator
may combine with any content generator, representing a general paradigm:
first, generate rhythm using content-neutral wildcards, and then fill in mean-
ingful musical content.

Nested generators may become unwieldy, however, as the performer adds
additional layers; the arguments for the outer generators are separated from the
generator name by all of the code for the inner generators. Note, in example
C, that "^.-" belongs to \seq, but fully 25 characters intervene between the
argument string and the generator name that gives it purpose. To address this
problem, cll introduces a chaining operator, ::, which appears between two
generators. Examples C and D represent the same behavior, but in D, \seq
and its argument are practically adjacent. When chaining, the code structure
is linear rather than hierarchical, thus simpler to read and edit.

Of particular interest is a “filter generator,” \fork, which applies different
generators to different time spans within the same source string (which itself
may come from other generators). \fork’s second input is itself a pattern string
containing generators, each of which applies only to its own time span. For
example (Listing 4), one could fill \fork’s source string with wildcards, and
apply different harmonic content to different parts of the bar (example A). The
"13" generator applies to the first 2.5 beats, and "24" to the remaining 1.5,
resulting in a “chord change” on the downbeat and on beat 3.5.

\fork also solves another common problem. Looking back to Listing 3 B,
the loud item ^ represents a strong accent on the downbeat. \ins, however,
is free to place a note within the first beat, weakening the accent. A user can
“protect” the first beat from insertion by forking (Listing 4, example B1). This
trivial example could be written without \fork (example B2); however, \fork
is necessary in example C. It is not possible to chain the \seq onto the top-
level string; but, using \ins at the top level fails to protect the first beat from
insertion. Example C’s use of \fork handles all the requirements.

Nested double-quotes are a novel syntax feature. Left-to-right, they scan
13The \seq generator will place five values in each bar, from a three-item sequence, leaving

one item left over. Generators maintain their state from one phrase to the next. The first bar will
use items ^.-^.; the second, -^.-^ and so on. \seq supports a “reset” flag, but this is disabled by
default because the quasi-isorhythmic behavior is more interesting.

9

// Code -document "part" organization
/hh.a0 = ".-|.-|. -|.-";
/hh.a1 = ".- .|.-|. .-| .- ";

/snr.a0 = " - -";
/snr.a1 = "|-| . |-";

/kik.a0 = "oooo";
/kik.a1 = "o|o|o _|o";

// Editor window "score" organization
/** a0 **/
/hh.a0 = ".-|.-|. -|.-";
/snr.a0 = " - -";
/kik.a0 = "oooo";

/** a1 **/
/hh.a1 = ".- .|.-|. .-| .- ";
/snr.a1 = "|-| . |-";
/kik.a1 = "o|o|o _|o";

Listing 5: cll “part”-style and “score”-style organization.

unambiguously: the first double-quote inside parentheses is always an open-
quote.

5 Additional features
The preceding sections cover the main features of cll: PR(\abstractLiveCode),
pattern strings and generators. cll implements additional commands, and two
user interfaces, to support them.

5.1 More commands
cll implements statement types beyond the “set pattern” statement discussed
previously. There are commands to create, start and stop processes, copy phrase
data to a different phrase name (to produce musical variations while keep-
ing older versions for later reuse), call predefined Func object, pass arbitrary
code to chucklib objects, and retrieve pattern strings from a process and insert
them into the current code document for further editing. These are simple but
valuable conveniences. For example, normal SuperCollider code to use a Fact
factory object is Fact(\factoryName) => BP(\bpName). The “make” statement
reduces this to /make(factoryName:bpName).

5.2 Code editor interface
Normal SuperCollider code documents can be unwieldy in performance, for
two reasons: navigation features in the SuperCollider Integrated Development
Environment (IDE) are too basic for the time pressures of live performance, and

10

the IDE’s auto-completion features conflict with cll syntax (particularly when
using generators, because of the nested double-quote delimiters).

Optionally, users may work within a graphical-interface (GUI) window, or-
ganizing processes’ phrase data into multiple panels. Code documents tend to
read more like printed parts for ensemble music: in Listing 5, all of the hi-hat
material clusters together in one place, as does the snare and kick drum ma-
terial. The GUI instead, displays two panels: a0 and a1; just as a printed score
aligns all the material for measure 1 together, the GUI shows all parts’ a0 ma-
terial together, and so on. The Esc key allows the user to jump to a panel with
just a few keystrokes.

Traditional navigation jumps from word to word by Ctrl-left or Ctrl-right
arrow keys. The high density of punctuation marks in pattern strings makes it
clumsy to move through them in this way. In the editor GUI, users can navigate
more rapidly through pattern strings using a syntax-aware navigation mode,
which parses a pattern string into a syntax tree and uses arrow keys to move
through the tree elements (where normal arrow keys move through characters,
words or lines). For instance, if syntax navigation is currently highlighting a
generator argument, the left and right arrow keys will move to the previous or
next argument (no matter how long each argument is).

5.3 Mobile control interface
Continuous parameter control is inconvenient in code. cll also provides a GUI
windowmirroring the “Mix 16” layout from the TouchOSC mobile app.14 Users
can “chuck” processes or individual parameters into the fader slots; toggle but-
tons start and stop processes. This makes it easier to control the mix or produce
crescendo/decrescendo effects interactively.

6 Conclusions
cll is more of a shift in orientation—toward notation embellished by algorith-
mic manipulation rather than pure code structure—than a radical departure
from existing approaches. It is still a text interface, and as such, improvising
in it shares with other live-coding interfaces shares the quality of being more
cognitive than neuromuscular, more analytical than reactive.

cll is conceptually oriented toward metrical position. This is a benefit—the
text notation itself clarifies the rhythm—but also a challenge, in that the per-
former must mentally identify the metrical position of new notes before being
able to write them. In the heat of performance, with time moving steadily for-
ward, it can be difficult to hold onto a note’s time point long enough to under-
stand where to put it in the code. In practice, it flows best as an experimental

14Hexler Limited. TouchOSC. http://hexler.net/software/touchosc. Accessed February 8,
2017.

11

http://hexler.net/software/touchosc

approach of “discovering” materials: place a note somewhere, and refine its po-
sition on subsequent iterations. Recalling Thelonious Monk, then, successful
improvisation is a matter of making the right mistakes.

A large part of cll’s value to me as a composer and performer is its flexibility
in sound design. I depend heavily on chucklib’s PR and BP design to work at two
levels of abstraction: a detailed implementation level for sound design, and a
higher “summary” level for composition. cll integrates into this system, and
this is important to me.

Flexibility, however, is in itself a potential trap. If every process has its own
intricate and radically different parameters and character identifiers, it is al-
most impossible to remember every process’s coding interface. Each becomes,
effectively, a unique musical instrument. In that case, it is not sufficient to
learn to improvise in cll, but rather to learn to improvise on twenty different
cll instruments. It takes discipline to standardize the identifiers across mul-
tiple processes and keep the parameter interfaces as streamlined as possible,
reducing sonic complexity to the minimum number of options. It is this ten-
sion between open-ended design and restrained interfaces that characterizes
the most fertile territory for live-coding with cll.

12

	Introduction
	Usage example
	Pattern string language
	Generators
	Additional features
	Conclusions

